Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mol Genet ; 29(23): 3744-3756, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33084871

RESUMEN

Several X-linked neurodevelopmental disorders including Rett syndrome, induced by mutations in the MECP2 gene, and fragile X syndrome (FXS), caused by mutations in the FMR1 gene, share autism-related features. The mRNA coding for methyl CpG binding protein 2 (MeCP2) has previously been identified as a substrate for the mRNA-binding protein, fragile X mental retardation protein (FMRP), which is silenced in FXS. Here, we report a homeostatic relationship between these two key regulators of gene expression in mouse models of FXS (Fmr1 Knockout (KO)) and Rett syndrome (MeCP2 KO). We found that the level of MeCP2 protein in the cerebral cortex was elevated in Fmr1 KO mice, whereas MeCP2 KO mice displayed reduced levels of FMRP, implicating interplay between the activities of MeCP2 and FMRP. Indeed, knockdown of MeCP2 with short hairpin RNAs led to a reduction of FMRP in mouse Neuro2A and in human HEK-293 cells, suggesting a reciprocal coupling in the expression level of these two regulatory proteins. Intra-cerebroventricular injection of an adeno-associated viral vector coding for FMRP led to a concomitant reduction in MeCP2 expression in vivo and partially corrected locomotor hyperactivity. Additionally, the level of MeCP2 in the posterior cortex correlated with the severity of the hyperactive phenotype in Fmr1 KO mice. These results demonstrate that MeCP2 and FMRP operate within a previously undefined homeostatic relationship. Our findings also suggest that MeCP2 overexpression in Fmr1 KO mouse posterior cerebral cortex may contribute to the fragile X locomotor hyperactivity phenotype.


Asunto(s)
Corteza Cerebral/patología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/patología , Regulación de la Expresión Génica , Proteína 2 de Unión a Metil-CpG/fisiología , Fenotipo , Animales , Corteza Cerebral/metabolismo , Femenino , Síndrome del Cromosoma X Frágil/etiología , Síndrome del Cromosoma X Frágil/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Mol Psychiatry ; 25(9): 2017-2035, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30224722

RESUMEN

Principal neurons encode information by varying their firing rate and patterns precisely fine-tuned through GABAergic interneurons. Dysregulation of inhibition can lead to neuropsychiatric disorders, yet little is known about the molecular basis underlying inhibitory control. Here, we find that excessive GABA release from basket cells (BCs) attenuates the firing frequency of Purkinje neurons (PNs) in the cerebellum of Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mice, a model of Fragile X Syndrome (FXS) with abrogated expression of the Fragile X Mental Retardation Protein (FMRP). This over-inhibition originates from increased excitability and Ca2+ transients in the presynaptic terminals, where Kv1.2 potassium channels are downregulated. By paired patch-clamp recordings, we further demonstrate that acutely introducing an N-terminal fragment of FMRP into BCs normalizes GABA release in the Fmr1-KO synapses. Conversely, direct injection of an inhibitory FMRP antibody into BCs, or membrane depolarization of BCs, enhances GABA release in the wild type synapses, leading to abnormal inhibitory transmission comparable to the Fmr1-KO neurons. We discover that the N-terminus of FMRP directly binds to a phosphorylated serine motif on the C-terminus of Kv1.2; and that loss of this interaction in BCs exaggerates GABA release, compromising the firing activity of PNs and thus the output from the cerebellar circuitry. An allosteric Kv1.2 agonist, docosahexaenoic acid, rectifies the dysregulated inhibition in vitro as well as acoustic startle reflex and social interaction in vivo of the Fmr1-KO mice. Our results unravel a novel molecular locus for targeted intervention of FXS and perhaps autism.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Transmisión Sináptica , Ácido gamma-Aminobutírico
3.
Hum Gene Ther ; 27(12): 982-996, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27604541

RESUMEN

Fragile X mental retardation protein (FMRP) is absent or highly reduced in Fragile X Syndrome, a genetic disorder causing cognitive impairment and autistic behaviors. Previous proof-of-principle studies have demonstrated that restoring FMRP in the brain using viral vectors can improve pathological abnormalities in mouse models of fragile X. However, unlike small molecule drugs where the dose can readily be adjusted during treatment, viral vector-based biological therapeutic drugs present challenges in terms of achieving optimal dosing and expression levels. The objective of this study was to investigate the consequences of expressing varying levels of FMRP selectively in neurons of Fmr1 knockout and wild-type (WT) mice. A wide range of neuronal FMRP transgene levels was achieved in individual mice after intra-cerebroventricular administration of adeno-associated viral vectors coding for FMRP. In all treated knockout mice, prominent FMRP transgene expression was observed in forebrain structures, whereas lower levels were present in more caudal regions of the brain. Reduced levels of the synaptic protein PSD-95, elevated levels of the transcriptional modulator MeCP2, and abnormal motor activity, anxiety, and acoustic startle responses in Fmr1 knockout mice were fully or partially rescued after expression of FMRP at about 35-115% of WT expression, depending on the brain region examined. In the WT mouse, moderate FMRP over-expression of up to about twofold had little or no effect on PSD-95 and MeCP2 levels or on behavioral endophenotypes. In contrast, excessive over-expression in the Fmr1 knockout mouse forebrain (approximately 2.5-6-fold over WT) induced pathological motor hyperactivity and suppressed the startle response relative to WT mice. These results delineate a range of FMRP expression levels in the central nervous system that confer phenotypic improvement in fragile X mice. Collectively, these findings are pertinent to the development of long-term curative gene therapy strategies for treating Fragile X Syndrome and other neurodevelopmental disorders.


Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Dependovirus/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/terapia , Terapia Genética , Vectores Genéticos/administración & dosificación , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Brain Behav ; 5(10): e00400, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26516618

RESUMEN

BACKGROUND: Fragile X Syndrome, the most common single gene cause of autism, results from loss of the RNA-binding protein FMRP. Although FMRP is highly expressed in neurons, it has also recently been identified in glia. It has been postulated that in the absence of FMRP, abnormal function of non-neuronal cells may contribute to the pathogenesis of the disorder. We previously demonstrated reduced numbers of oligodendrocyte precursor cells and delayed myelination in the cerebellum of fragile X (Fmr1) knockout mice. METHODS: We used quantitative western blotting and immunocytochemistry to examine the status of astrocytes and microglia in the cerebellum of Fmr1 mice during development and in adulthood. RESULTS: We report increased expression of the astrocyte marker GFAP in the cerebellum of Fmr1 mice starting in the second postnatal week and persisting in to adulthood. At 2 weeks postnatal, expression of Tumor Necrosis Factor Receptor 2 (TNFR2) and Leukemia Inhibitory Factor (LIF) were elevated in the Fmr1 KO cerebellum. In adults, expression of TNFR2 and the glial marker S100ß were also elevated in Fmr1 knockouts, but LIF expression was not different from wild-type mice. We found no evidence of microglial activation or neuroinflammation at any age examined. CONCLUSIONS: These findings demonstrate an atypical pattern of astrogliosis in the absence of microglial activation in Fmr1 knockout mouse cerebellum. Enhanced TNFR2 and LIF expression in young mice suggests that changes in the expression of astrocytic proteins may be an attempt to compensate for delayed myelination in the developing cerebellum of Fmr1 mice.


Asunto(s)
Astrocitos/patología , Síndrome del Cromosoma X Frágil/patología , Microglía/patología , Neuroglía/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Cerebelo/metabolismo , Cerebelo/patología , Modelos Animales de Enfermedad , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo
5.
Br Dent J ; 217(9): 488-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25377803
6.
Br Dent J ; 217(8): 396-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25342344

RESUMEN

Professor Jan Lindhe is an emeritus professor at the University of Gothenburg, where he was previously Chair of Periodontics and Dean of the School of Dentistry. Lindhe graduated from the Royal School of Dentistry in Malmö, Sweden. He is now one of the world's most renowned researchers in periodontology and is well known for his book Clinical periodontology and implant dentistry as well as hundreds of other publications. Jan Lindhe acted as editor of the Journal of Clinical Periodontology for over 30 years and continues to contribute to scientific debate and research.


Asunto(s)
Implantes Dentales/estadística & datos numéricos , Prioridades en Salud , Humanos , Periodontitis/complicaciones , Periodontitis/terapia , Reino Unido
7.
Br Dent J ; 217(4): 166, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25146796
8.
Neuropsychopharmacology ; 39(13): 3100-11, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24998620

RESUMEN

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide repeat expansion in the FMR1 gene that codes for fragile X mental retardation protein (FMRP). To determine if FMRP expression in the central nervous system could reverse phenotypic deficits in the Fmr1 knockout (KO) mouse model of FXS, we used a single-stranded adeno-associated viral (AAV) vector with viral capsids from serotype 9 that contained a major isoform of FMRP. FMRP transgene expression was driven by the neuron-selective synapsin-1 promoter. The vector was delivered to the brain via a single bilateral intracerebroventricular injection into neonatal Fmr1 KO mice and transgene expression and behavioral assessments were conducted 22-26 or 50-56 days post injection. Western blotting and immunocytochemical analyses of AAV-FMRP-injected mice revealed FMRP expression in the striatum, hippocampus, retrosplenial cortex, and cingulate cortex. Cellular expression was selective for neurons and reached ∼ 50% of wild-type levels in the hippocampus and cortex at 56 days post injection. The pathologically elevated repetitive behavior and the deficit in social dominance behavior seen in phosphate-buffered saline-injected Fmr1 KO mice were reversed in AAV-FMRP-injected mice. These results provide the first proof of principle that gene therapy can correct specific behavioral abnormalities in the mouse model of FXS.


Asunto(s)
Encéfalo/metabolismo , Dependovirus/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/terapia , Animales , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Epilepsia Refleja/etiología , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/patología , Regulación de la Expresión Génica/genética , Vectores Genéticos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Fenotipo , Predominio Social , Estadísticas no Paramétricas , Conducta Estereotipada/fisiología , Vocalización Animal
9.
Br Dent J ; 216(11): 608-9, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24923919
12.
Br Dent J ; 216(9): 490, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24809551
13.
19.
Br Dent J ; 216(1): 4-5, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24413101
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...