Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687682

RESUMEN

The improvement of biodegradable metals is currently an active and promising research area for their capabilities in implant manufacturing. However, controlling their degradation rate once their surface is in contact with the physiological media is a challenge. Surface treatments are in the way of addressing the improvement of this control. Zinc is a biocompatible metal present in the human body as well as a metal widely used in coatings to prevent corrosion, due to its well-known metal protective action. These two outstanding characteristics make zinc coating worthy of consideration to improve the degradation behaviour of implants. Electrodeposition is one of the most practical and common technologies to create protective zinc coatings on metals. This article aims to review the effect of the different parameters involved in the electrochemical process on the topography and corrosion characteristics of the zinc coating. However, certainly, it also provides an actual and comprehensive description of the state-of-the-art of the use of electrodeposited zinc for biomedical applications, focusing on their capacity to protect against bacterial colonization and to allow cell adhesion and proliferation.

2.
Int J Biol Macromol ; 183: 1222-1235, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33984386

RESUMEN

Bacterial contamination in implanted biomedical devices is a critical daily concern. The most used material for permanent implant in biomedical field is Ti6Al4V alloy due to its beneficial mechanical properties and high biocompatibility. Accordingly, in this work different polymeric antibacterial coatings poly(N-vinyl pyrrolidone) (PVP), hyaluronic acid (HA) and chitosan (CHI) were developed and comparatively analysed for Ti6Al4V surface covering. The adhesion of these coatings to Ti6Al4V substrates were carried out after the conjugation of these polymers with the so well-known bioadhesive properties of catechol (CA) anchor group. These surface modifications were characterized by X-ray photoelectronic spectroscopy, contact angle measurements and atomic force microscopy. In addition, the stability of CA-conjugated polymeric coatings was compared with the coatings formed with unconjugated polymers. Finally, the cytocompatibility and antibacterial properties against gram-positive and gram-negative strains on coated Ti6Al4V substrates were assessed confirming the effectiveness of these polymeric coatings against bacterial infections for future applications in protecting biomedical implants.


Asunto(s)
Aleaciones/síntesis química , Antibacterianos/síntesis química , Catecoles/química , Ácido Hialurónico/química , Pirrolidinonas/química , Aleaciones/química , Aleaciones/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Quitosano , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Espectroscopía de Fotoelectrones , Prótesis e Implantes , Propiedades de Superficie , Titanio/química , Titanio/farmacología
3.
Biomed Res Int ; 2019: 8456342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956987

RESUMEN

Dental implantology allows replacement of failing teeth providing the patient with a general improvement of health. Unfortunately not all reconstructions succeed, as a consequence of the development of infections of bacterial origin on the implant surface. Surface topography is known to modulate a differential response to bacterial and mammalian cells but topographical measurements are often limited to vertical parameters. In this work we have extended the topographical measurements also to lateral and hybrid parameters of the five most representative implant and prosthetic component surfaces and correlated the results with bacterial and mammalian cell adhesion and proliferation outcomes. Primary human oral gingival fibroblast (gum cells) and the bacterial strains: Streptococcus mutans, Streptococcus sanguinis and Aggregatibacter actinomycetemcomitans, implicated in infectious processes in the oral/implant environment were employed in the presence or absence of human saliva. The results confirm that even though not all the measured surface is available for bacteria to adhere, the overall race for the surface between cells and bacteria is more favourable to the smoother surfaces (nitrided, as machined or lightly acid etched) than to the rougher ones (strong acid etched or sandblasted/acid etched).


Asunto(s)
Adhesión Bacteriana , Implantes Dentales/microbiología , Fibroblastos , Encía , Bacterias Grampositivas/crecimiento & desarrollo , Mucosa Bucal , Adhesión Celular , Fibroblastos/metabolismo , Fibroblastos/microbiología , Fibroblastos/patología , Encía/metabolismo , Encía/microbiología , Encía/patología , Bacterias Grampositivas/clasificación , Bacterias Grampositivas/aislamiento & purificación , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Mucosa Bucal/patología , Propiedades de Superficie
4.
Carbohydr Polym ; 207: 824-833, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30600071

RESUMEN

Bacterial contamination is a critical problem in medical implants, which are preferential sites for bacterial adhesion, leading to infections which can compromise health and immune system of patients. Commercial titanium alloys are the most commonly used materials for permanent implants in contact with bone, and the prevention of infections on their surface is therefore a crucial challenge for orthopaedic and dental surgeons. Thus, the aim of this work is to develop polysaccharide antibacterial coatings onto modified titanium surfaces with different surface topography, in order to act as reservoirs of antibacterial agents. For this, hyaluronic acid/chitosan polyelectrolyte multilayers were successfully developed after acid hydrolysis of Ti-6Al -4 V alloys. Surface modification could be monitorized by XPS spectroscopy, fluorescence confocal microscopy and contact angle measurements. Furthermore, the effect of surface micropatterning on the stability, hydrophilicity, capability to the loading and release of triclosan and the antibacterial properties of prepared multilayers against Staphylococcus aureus were also analysed.


Asunto(s)
Antibacterianos/farmacología , Quitosano/química , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/química , Titanio/química , Triclosán/farmacología , Aleaciones , Antibacterianos/administración & dosificación , Materiales Biocompatibles Revestidos , Liberación de Fármacos , Contaminación de Equipos/prevención & control , Interacciones Hidrofóbicas e Hidrofílicas , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Triclosán/administración & dosificación
5.
Biomed Res Int ; 2019: 1437806, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31915679

RESUMEN

Controlling initial bacterial adhesion is essential to prevent biofilm formation and implant-related infection. The search for surface coatings that prevent initial adhesion is a powerful strategy to obtain implants that are more resistant to infection. Tracking the progression of adhesion on surfaces from the beginning of the interaction between bacteria and the surface provides a deeper understanding of the initial adhesion behavior. To this purpose, we have studied the progression over time of bacterial adhesion from a laminar flow of a bacterial suspension, using a modified Robbins device (MRD). Comparing with other laminar flow devices, such as the parallel plate flow chamber, MRD allows the use of diverse substrata under the same controlled flow conditions simultaneously. Two different surfaces of Ti6Al4V and two strains of Staphylococcus epidermidis with different exopolymer production were tested. In addition, the modified Robbins device was examined for its convenience and suitability for the purpose of this study. Results were analyzed according to a pseudofirst order kinetic. The values of the parameters obtained from this model make it possible to discriminate the adhesive behavior of surfaces and bacteria. One of the fitting parameters depends on the bacterial strain and the other only on the surface properties of the substrate.


Asunto(s)
Adhesión Bacteriana/fisiología , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Staphylococcus epidermidis , Titanio/química , Aleaciones , Biopelículas , Cinética , Staphylococcus epidermidis/metabolismo , Staphylococcus epidermidis/fisiología
6.
J Biomed Mater Res B Appl Biomater ; 106(3): 997-1009, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28480611

RESUMEN

The effects of surface modifications and bacteria on the corrosion behavior of titanium have been studied. Five surface modifications were analyzed: two acid etchings (op V, op N), acid etching + anodic oxidation (op NT), sandblasting + acid etching (SLA), and machined surfaces (mach). The corrosion behavior of the surface modifications was evaluated by following the standard ANSI/AAMI/ISO 10993-15:2000. Cyclic potentiodynamic and potentiostatic anodic polarization tests and ion release by ICP-OES after immersion for 7 days in 0.9% NaCl were carried out. Microbiologically induced corrosion (MIC) of low and high roughness (mach, op V) was assessed in situ by electrochemical techniques. Streptococcus mutans bacteria were resuspended in PBS at a concentration of 3 × 108 bacteria mL-1 and maintained at 37°C. MIC was measured through the open circuit potential, Eoc , and electrochemical impedance spectroscopy from 2 to 28 days. Potentiodynamic curves showed the typical passive behavior for all the surface modifications. The titanium ion release after immersion was below 3 ppb. In situ bacteria monitoring showed the decrease in Eoc from -0.065 (SD 0.067) Vvs. Ag/AgCl in mach and -0.115 (SD 0.084) Vvs. Ag/AgCl in op V, to -0.333 (SD 0.147) Vvs. Ag/AgCl in mach and -0.263 (SD 0.005) Vvs. Ag/AgCl in op V, after 2 and 28 days, respectively. A reduction of the oxide film resistance, especially in op V (54 MΩ cm2 and 6 MΩ cm2 , after 2 and 28 days, respectively) could be seen. Streptococcus mutans negatively affected the corrosion resistance of titanium. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 997-1009, 2018.


Asunto(s)
Bacterias/química , Corrosión , Implantes Dentales/microbiología , Titanio , Grabado Ácido Dental , Técnicas Electroquímicas , Humanos , Saliva Artificial , Streptococcus mutans/efectos de los fármacos , Propiedades de Superficie
7.
J Biomed Mater Res B Appl Biomater ; 106(1): 421-432, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28186691

RESUMEN

Implant integration is a complex process mediated by the interaction of the implant surface with the surrounding ions, proteins, bacteria, and tissue cells. Although most implants achieve long-term bone-tissue integration, preventing pervasive implant-centered infections demands further advances, particularly in surfaces design. In this work, we analyzed classical microrough implant surfaces (only acid etched, AE; sandblasted then acid etching, SB + AE) and a new calcium-ion-modified implant surface (AE + Ca) in terms of soft- and hard-tissue integration, bacterial adhesion, and biofilm formation. We cultured on the surfaces primary oral cells from gingiva and alveolar bone, and three representative bacterial strains of the oral cavity, emulating oral conditions of natural saliva and blood plasma. With respect to gingiva and bone cells and in the presence of platelets and plasma proteins, AE + Ca surfaces yielded in average 86% higher adhesion, 44% more proliferation, and triggered 246% more synthesis of extracellular matrix biomolecules than AE-unmodified controls. Concomitantly, AE + Ca surfaces regardless of conditioning with saliva and/or blood plasma showed significantly less bacterial adhesion (67% reduction in average) and biofilm formation (40% reduction in average) than unmodified surfaces. These results highlight the importance of a calcium-rich hydrated interface to favor mammalian cell functions over microbial colonization at implant surfaces. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 421-432, 2018.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Calcio/química , Fibroblastos/metabolismo , Bacterias Grampositivas/fisiología , Implantes Experimentales , Osteoblastos/metabolismo , Femenino , Fibroblastos/citología , Humanos , Masculino , Osteoblastos/citología , Propiedades de Superficie
8.
ACS Appl Mater Interfaces ; 8(18): 11326-35, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27088315

RESUMEN

Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.


Asunto(s)
Adhesión Bacteriana , Huesos , Ácido Fítico , Propiedades de Superficie , Titanio
9.
Colloids Surf B Biointerfaces ; 106: 248-57, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23434719

RESUMEN

Formation of thin films on titanium alloys incorporating bioactive small molecules or macromolecules is a route to improve their biocompatibility. Aminoalkylsilanes are commonly employed as interface reagents that combine good adhesion properties with an amino tail group susceptible of further functionalization. This article introduces a reproducible methodology to obtain a cross-linked polymer-type brush structure of covalently-bonded aminoalkylsiloxane chains on Ti6Al4V. The experimental protocol can be fine-tuned to provide a high density of surface-coated amino groups (threshold value: 2.1±0.1×10(-8) mol cm(-2)) as proven by chemical and spectrophotometric analyses. Using a model reaction involving the condensation of 3-aminopropyltrimethoxysilane (APTMS) on Ti6Al4V alloy, we herein show the effects of reaction temperature, reaction time and solvent humidity on the composition and structure of the film. The stability of the resulting coating under physiological-like conditions as well as the possibility of surface re-silanization has also been evaluated. To verify if detrimental effects on the biological performance of the Ti6Al4V alloy were induced by this coverage, human primary osteoblasts behavior, Staphylococci adhesion and biofilm formation have been tested and compared to the Ti6Al4V oxidized surface. Reaction with trans-cinnamaldehyde has used in order to determine useful amino groups at aminosilanized surface, XPS and UV analyses of imino derivatives generated reveal that almost a 50% of these groups are actually available at the siloxane chains.


Asunto(s)
Aminas/química , Materiales Biocompatibles , Silanos/química , Titanio/química , Acroleína/análogos & derivados , Acroleína/química , Aleaciones , Células Cultivadas , Humanos , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA