Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 60(26): 2098-2115, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34143605

RESUMEN

The decaheme enzyme cytochrome c nitrite reductase (ccNiR) catalyzes reduction of nitrite to ammonium in a six-electron, eight-proton process. With a strong reductant as the electron source, ammonium is the sole product. However, intermediates accumulate when weaker reductants are employed, facilitating study of the ccNiR mechanism. Herein, the early stages of Shewanella oneidensis ccNiR-catalyzed nitrite reduction were investigated by using the weak reductants N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and ferrocyanide. In stopped-flow experiments, reduction of nitrite-loaded ccNiR by TMPD generated a transient intermediate, identified as FeH1II(NO2-), where FeH1 represents the ccNiR active site. FeH1II(NO2-) accumulated rapidly and was then more slowly converted to the two-electron-reduced moiety {FeH1NO}7; ccNiR was not reduced beyond the {FeH1NO}7 state. The midpoint potentials for sequential reduction of FeH1III(NO2-) to FeH1II(NO2-) and then to {FeH1NO}7 were estimated to be 130 and 370 mV versus the standard hydrogen electrode, respectively. FeH1II(NO2-) does not accumulate at equilibrium because its reduction to {FeH1NO}7 is so much easier than the reduction of FeH1III(NO2-) to FeH1II(NO2-). With weak reductants, free NO• was released from nitrite-loaded ccNiR. The release of NO• from {FeH1NO}7 is exceedingly slow (k ∼ 0.001 s-1), but it is somewhat faster (k ∼ 0.050 s-1) while FeH1III(NO2-) is being reduced to {FeH1NO}7; then, the release of NO• from the undetectable transient {FeH1NO}6 can compete with reduction of {FeH1NO}6 to {FeH1NO}7. CcNiR appears to be optimized to capture nitrite and minimize the release of free NO•. Nitrite capture is achieved by reducing bound nitrite with even weak electron donors, while NO• release is minimized by stabilizing the substitutionally inert {FeH1NO}7 over the more labile {FeH1NO}6.


Asunto(s)
Citocromos a1/química , Citocromos c1/química , Nitrato Reductasas/química , Nitritos/química , Compuestos de Anilina/química , Catálisis , Dominio Catalítico , Ferrocianuros/química , Cinética , Modelos Químicos , Oxidación-Reducción , Shewanella/enzimología
2.
J Am Chem Soc ; 141(34): 13358-13371, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31381304

RESUMEN

Cytochrome c nitrite reductase (ccNiR) is a periplasmic, decaheme homodimeric enzyme that catalyzes the six-electron reduction of nitrite to ammonia. Under standard assay conditions catalysis proceeds without detected intermediates, and it has been assumed that this is also true in vivo. However, this report demonstrates that it is possible to trap a putative intermediate by controlling the electrochemical potential at which reduction takes place. UV/vis spectropotentiometry showed that nitrite-loaded Shewanella oneidensis ccNiR is reduced in a concerted two-electron step to generate an {FeNO}7 moiety at the active site, with an associated midpoint potential of +246 mV vs SHE at pH 7. By contrast, cyanide-bound active site reduction is a one-electron process with a midpoint potential of +20 mV, and without a strong-field ligand the active site midpoint potential shifts 70 mV lower still. EPR analysis subsequently revealed that the {FeNO}7 moiety possesses an unusual spectral signature, different from those normally observed for {FeNO}7 hemes, that may indicate magnetic interaction of the active site with nearby hemes. Protein film voltammetry experiments previously showed that catalytic nitrite reduction to ammonia by S. oneidensis ccNiR requires an applied potential of at least -120 mV, well below the midpoint potential for {FeNO}7 formation. Thus, it appears that an {FeNO}7 active site is a catalytic intermediate in the ccNiR-mediated reduction of nitrite to ammonia, whose degree of accumulation depends exclusively on the applied potential. At low potentials the species is rapidly reduced and does not accumulate, while at higher potentials it is trapped, thus preventing catalytic ammonia formation.


Asunto(s)
Citocromos a1/metabolismo , Citocromos c1/metabolismo , Nitrato Reductasas/metabolismo , Nitritos/metabolismo , Shewanella/enzimología , Amoníaco/metabolismo , Catálisis , Dominio Catalítico , Citocromos a1/química , Citocromos c1/química , Modelos Moleculares , Nitrato Reductasas/química , Oxidación-Reducción , Conformación Proteica , Shewanella/química , Shewanella/metabolismo , Espectrofotometría Ultravioleta , Especificidad por Sustrato
3.
J Biol Inorg Chem ; 23(6): 861-878, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29946979

RESUMEN

A re-investigation of the interaction with NO of the small tetraheme protein cytochrome c554 (C554) from Nitrosomonas europaea has shown that the 5-coordinate heme II of the two- or four-electron-reduced protein will nitrosylate reversibly. The process is first order in C554, first order in NO, and second-order overall. The rate constant for NO binding to the heme is 3000 ± 140 M-1s-1, while that for dissociation is 0.034 ± 0.009 s-1; the degree of protein reduction does not appear to significantly influence the nitrosylation rate. In contrast to a previous report (Upadhyay AK, et al. J Am Chem Soc 128:4330, 2006), this study found no evidence of C554-catalyzed NO reduction, either with [Formula: see text] or with [Formula: see text] Some sub-stoichiometric oxidation of the lowest potential heme IV was detected when [Formula: see text] was exposed to an excess of NO, but this is believed to arise from partial intramolecular electron transfer that generates {Fe(NO)}8 at heme II. The vacant heme II coordination site of C554 is crowded by three non-bonding hydrophobic amino acids. After replacing one of these (Phe156) with the smaller alanine, the nitrosylation rate for F156A2- and F156A4- was about 400× faster than for the wild type, though the rate of the reverse denitrosylation process was almost unchanged. Unlike in the wild-type C554, the 6-coordinate low-spin hemes of F156A4- oxidized over the course of several minutes after exposure to NO. Concomitant formation of N2O could explain this heme oxidation, though alternative explanations are equally plausible given the available data.


Asunto(s)
Citocromos c/metabolismo , Óxido Nítrico/metabolismo , Nitrosomonas europaea/enzimología , Oxidorreductasas/metabolismo , Catálisis , Transporte de Electrón , Hemo/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Oxidación-Reducción , Unión Proteica
4.
Biochemistry ; 55(4): 686-96, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26757411

RESUMEN

The previously reported nitric oxide precursor [Mn(PaPy2Q)NO]ClO4 (1), where (PaPy2QH) is N,N-bis(2-pyridylmethyl)-amine-N-ethyl-2-quinoline-2-carboxamide, was used to investigate the interaction between NO and the protein truncated hemoglobin N (trHbN) from the pathogen Mycobacterium tuberculosis. Oxy-trHbN is exceptionally efficient at converting NO to nitrate, with a reported rate constant of 7.45 × 10(8) M(-1) s(-1) [Ouellet, H., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5902] compared to 4 × 10(7) M(-1) s(-1) for oxy-myoglobin [Eich, R. F., et al. (1996) Biochemistry 35, 6976]. This work analyzed the NO dioxygenation kinetics of wild type oxy-trHbN and a set of variants, as well as the nitrosylation kinetics for the reduced (red-trHbN) forms of these proteins. The NO dioxygenation reaction was remarkably insensitive to mutations, even within the active site, while nitrosylation was somewhat more sensitive. Curiously, the most profound change to the rate constant for nitrosylation was effected by deletion of a 12-amino acid dangling N-terminal sequence. The deletion mutant exhibited first-order kinetics with respect to NO but was zero-order with respect to protein concentration; by contrast, all other variants exhibited second-order rate constants of >10(8) M(-1) s(-1). trHbN boasts an extensive tunnel system that connects the protein exterior with the active site, which is likely the main contributor to the protein's impressive NO dioxygenation efficiency. The results herein suggest that N-terminal deletion abolishes a large scale conformational motion, in the absence of which NO can still readily enter the tunnel system but is then prevented from binding to the heme for an extended period of time.


Asunto(s)
Proteínas Bacterianas/química , Hemoglobinas/química , Mycobacterium tuberculosis/química , Óxido Nítrico/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Hemoglobinas/genética , Cinética , Mycobacterium tuberculosis/genética , Óxido Nítrico/metabolismo , Oxidación-Reducción , Eliminación de Secuencia
5.
Biochemistry ; 54(24): 3749-58, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26042961

RESUMEN

The electrochemical properties of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), a homodimer that contains five hemes per protomer, were investigated by UV-visible and electron paramagnetic resonance (EPR) spectropotentiometries. Global analysis of the UV-vis spectropotentiometric results yielded highly reproducible values for the heme midpoint potentials. These midpoint potential values were then assigned to specific hemes in each protomer (as defined in previous X-ray diffraction studies) by comparing the EPR and UV-vis spectropotentiometric results, taking advantage of the high sensitivity of EPR spectra to the structural microenvironment of paramagnetic centers. Addition of the strong-field ligand cyanide led to a 70 mV positive shift of the active site's midpoint potential, as the cyanide bound to the initially five-coordinate high-spin heme and triggered a high-spin to low-spin transition. With cyanide present, three of the remaining hemes gave rise to distinctive and readily assignable EPR spectral changes upon reduction, while a fourth was EPR-silent. At high applied potentials, interpretation of the EPR spectra in the absence of cyanide was complicated by a magnetic interaction that appears to involve three of five hemes in each protomer. At lower applied potentials, the spectra recorded in the presence and absence of cyanide were similar, which aided global assignment of the signals. The midpoint potential of the EPR-silent heme could be assigned by default, but the assignment was also confirmed by UV-vis spectropotentiometric analysis of the H268M mutant of ccNiR, in which one of the EPR-silent heme's histidine axial ligands was replaced with a methionine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Hemo/metabolismo , Modelos Moleculares , Nitrato Reductasas/metabolismo , Cianuro de Potasio/metabolismo , Shewanella/enzimología , Nitrito de Sodio/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico/efectos de los fármacos , Citocromos a1/antagonistas & inhibidores , Citocromos a1/química , Citocromos a1/genética , Citocromos c1/antagonistas & inhibidores , Citocromos c1/química , Citocromos c1/genética , Espectroscopía de Resonancia por Spin del Electrón , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Hemo/química , Ligandos , Conformación Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Nitrato Reductasas/antagonistas & inhibidores , Nitrato Reductasas/química , Nitrato Reductasas/genética , Oxidación-Reducción , Cianuro de Potasio/química , Cianuro de Potasio/farmacología , Conformación Proteica/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Nitrito de Sodio/química , Nitrito de Sodio/farmacología , Espectrofotometría , Volumetría
6.
Biochemistry ; 53(35): 5638-46, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25137350

RESUMEN

Multielectron multiproton reactions play an important role in both biological systems and chemical reactions involved in energy storage and manipulation. A key strategy employed by nature in achieving such complex chemistry is the use of proton-coupled redox steps. Cytochrome c nitrite reductase (ccNiR) catalyzes the six-electron seven-proton reduction of nitrite to ammonia. While a catalytic mechanism for ccNiR has been proposed on the basis of studies combining computation and crystallography, there have been few studies directly addressing the nature of the proton-coupled events that are predicted to occur along the nitrite reduction pathway. Here we use protein film voltammetry to directly interrogate the proton-coupled steps that occur during nitrite reduction by ccNiR. We find that conversion of nitrite to ammonia by ccNiR adsorbed to graphite electrodes is defined by two distinct phases; one is proton-coupled, and the other is not. Mutation of key active site residues (H257, R103, and Y206) modulates these phases and specifically alters the properties of the detected proton-dependent step but does not inhibit the ability of ccNiR to conduct the full reduction of nitrite to ammonia. We conclude that the active site residues examined are responsible for tuning the protonation steps that occur during catalysis, likely through an extensive hydrogen bonding network, but are not necessarily required for the reaction to proceed. These results provide important insight into how enzymes can specifically tune proton- and electron transfer steps to achieve high turnover numbers in a physiological pH range.


Asunto(s)
Amoníaco/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Citocromos a1/química , Citocromos a1/metabolismo , Citocromos c1/química , Citocromos c1/metabolismo , Nitrato Reductasas/química , Nitrato Reductasas/metabolismo , Nitritos/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Citocromos a1/genética , Citocromos c1/genética , Transporte de Electrón , Hemo/química , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Nitrato Reductasas/genética , Oxidación-Reducción , Conformación Proteica , Estructura Cuaternaria de Proteína , Protones , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shewanella/enzimología , Shewanella/genética , Especificidad por Sustrato
7.
Biochemistry ; 53(13): 2136-44, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24645742

RESUMEN

Cytochrome c nitrite reductase (ccNiR) from Shewanella oneidensis, which catalyzes the six-electron reduction of nitrite to ammonia in vivo, was shown to oxidize hydroxylamine in the presence of large quantities of this substrate, yielding nitrite as the sole free nitrogenous product. UV-visible stopped-flow and rapid-freeze-quench electron paramagnetic resonance data, along with product analysis, showed that the equilibrium between hydroxylamine and nitrite is fairly rapidly established in the presence of high initial concentrations of hydroxylamine, despite said equilibrium lying far to the left. By contrast, reduction of hydroxylamine to ammonia did not occur, even though disproportionation of hydroxylamine to yield both nitrite and ammonia is strongly thermodynamically favored. This suggests a kinetic barrier to the ccNiR-catalyzed reduction of hydroxylamine to ammonia. A mechanism for hydroxylamine reduction is proposed in which the hydroxide group is first protonated and released as water, leaving what is formally an NH2(+) moiety bound at the heme active site. This species could be a metastable intermediate or a transition state but in either case would exist only if it were stabilized by the donation of electrons from the ccNiR heme pool into the empty nitrogen p orbital. In this scenario, ccNiR does not catalyze disproportionation because the electron-donating hydroxylamine does not poise the enzyme at a sufficiently low potential to stabilize the putative dehydrated hydroxylamine; presumably, a stronger reductant is required for this.


Asunto(s)
Amoníaco/metabolismo , Citocromos a1/metabolismo , Citocromos c1/metabolismo , Hidroxilamina/metabolismo , Nitrato Reductasas/metabolismo , Nitritos/metabolismo , Shewanella/enzimología , Amoníaco/química , Dominio Catalítico , Citocromos a1/química , Citocromos c1/química , Hidroxilamina/química , Nitrato Reductasas/química , Nitritos/química , Termodinámica
8.
Inorg Chem ; 52(13): 7623-32, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23768169

RESUMEN

The reaction of nitric oxide with oxy-myoglobin (oxyMb) to form ferric myoglobin (metMb) and nitrate, and the metMb-catalyzed isomerization of peroxynitrite to nitrate, have long been assumed to proceed via the same iron-bound peroxynitrite intermediate (metMb(OONO)). More recent research showed that the metMb-catalyzed isomerization of peroxynitrite to nitrate produces detectable amounts of nitrogen dioxide and ferryl myoglobin (ferrylMb). This suggests a mechanism in which the peroxynitrite binds to the metMb, ferrylMb is transiently generated by dissociation of NO2, and nitrate is formed when the NO2 nitrogen attacks the ferrylMb oxo ligand. The presence of free NO2 and ferrylMb products reveals that small amounts of NO2 escape from myoglobin's interior before recombination can occur. Free NO2 and ferrylMb should also be generated in the reaction of oxyMb with NO, if the common intermediate metMb(OONO) is formed. However, this report presents a series of time-resolved UV/vis spectroscopy experiments in which no ferrylMb was detected when oxyMb and NO reacted. The sensitivity of the methodology is such that as little as 10% of the ferrylMb predicted from the experiments with metMb and peroxynitrite should have been detectable. These results lead to the conclusion that the oxyMb + NO and metMb + ONOO(-) reactions do not proceed via a common intermediate as previously thought. The conclusion has significant implications for researchers that propose a possible role of oxyMb in intracellular NO regulation, because it means that toxic NO2 and ferrylMb are not generated during NO oxidation by this species.


Asunto(s)
Metamioglobina/metabolismo , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Animales , Ácido Ascórbico/metabolismo , Catálisis , Caballos , Isomerismo , Oxidación-Reducción
9.
Biochemistry ; 51(51): 10175-85, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23210513

RESUMEN

Shewanella oneidensis cytochrome c nitrite reductase (soNrfA), a dimeric enzyme that houses five c-type hemes per protomer, conducts the six-electron reduction of nitrite and the two-electron reduction of hydroxylamine. Protein film voltammetry (PFV) has been used to study the cytochrome c nitrite reductase from Escherichia coli (ecNrfA) previously, revealing catalytic reduction of both nitrite and hydroxylamine substrates by ecNrfA adsorbed to a graphite electrode that is characterized by "boosts" and attenuations in activity depending on the applied potential. Here, we use PFV to investigate the catalytic properties of soNrfA during both nitrite and hydroxylamine turnover and compare those properties to the properties of ecNrfA. Distinct differences in both the electrochemical and kinetic characteristics of soNrfA are observed; e.g., all detected electron transfer steps are one-electron in nature, contrary to what has been observed in ecNrfA [Angove, H. C., Cole, J. A., Richardson, D. J., and Butt, J. N. (2002) J. Biol. Chem. 277, 23374-23381]. Additionally, we find evidence of substrate inhibition during nitrite turnover and negative cooperativity during hydroxylamine turnover, neither of which has previously been observed in any cytochrome c nitrite reductase. Collectively, these data provide evidence that during catalysis, potential pathways of communication exist between the individual soNrfA monomers comprising the native homodimer.


Asunto(s)
Citocromos a1/metabolismo , Citocromos c1/metabolismo , Nitrato Reductasas/metabolismo , Nitritos/metabolismo , Shewanella/enzimología , Citocromos a1/química , Citocromos c1/química , Electroquímica , Transporte de Electrón , Escherichia coli/enzimología , Hidroxilamina/metabolismo , Nitrato Reductasas/química , Multimerización de Proteína
10.
J Biol Inorg Chem ; 17(4): 647-62, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22382353

RESUMEN

The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein "small tetraheme c" replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 °C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-Å-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).


Asunto(s)
Citocromos a1/biosíntesis , Citocromos a1/química , Citocromos c1/biosíntesis , Citocromos c1/química , Nitrato Reductasas/biosíntesis , Nitrato Reductasas/química , Shewanella/enzimología , Adsorción , Cristalografía por Rayos X , Citocromos a1/genética , Citocromos a1/aislamiento & purificación , Citocromos c1/genética , Citocromos c1/aislamiento & purificación , Electrodos , Cinética , Modelos Moleculares , Nitrato Reductasas/genética , Nitrato Reductasas/aislamiento & purificación , Conformación Proteica , Shewanella/citología , Espectrofotometría Ultravioleta , Propiedades de Superficie
11.
Biochemistry ; 50(21): 4491-503, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21524057

RESUMEN

We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N'-bis(carboxymethyl)-N,N'-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s(-1). Implications for catalase function are discussed.


Asunto(s)
Catalasa/metabolismo , Óxido Nítrico/metabolismo , Animales , Catalasa/química , Bovinos , Cristalografía por Rayos X , Cinética , Óxido Nítrico/química , Conformación Proteica
12.
Methods Enzymol ; 486: 447-63, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21185448

RESUMEN

Hydroxylamine, an important intermediate in ammonia oxidation by ammonia oxidizing bacteria (AOB), is inherently unstable with respect to disproportionation. The process is slow in neutral solutions, but could potentially be catalyzed by enzymes such as the hydroxylamine oxidoreductases, which normally catalyze the oxidation of ammonia to nitrite in the AOB. Disproportionation could be physiologically important to some AOB under microaerobic conditions, and could also confound in vitro analyses if it occurs and is not taken into consideration. This chapter presents methods for detecting ammonia, nitric oxide, nitrite, nitrous oxide, and isotopically labeled dinitrogen, which are the most thermodynamically favored products of hydroxylamine disproportionation.


Asunto(s)
Amoníaco/análisis , Técnicas Biosensibles/métodos , Óxido Nítrico/análisis , Nitritos/análisis , Óxido Nitroso/análisis , Biocatálisis , Hidroxilamina , Oxidación-Reducción , Oxidorreductasas/metabolismo
13.
Biochemistry ; 49(39): 8546-53, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20812758

RESUMEN

Hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea normally catalyzes oxidation of NH(2)OH to NO(2)(-). This paper reports experiments in which HAO was thermodynamically poised to catalyze reduction of NO(2)(-) to NH(4)(+). HAO was found to catalyze the reduction of NO(2)(-) by methyl viologen monocation radical (MV(red)), displaying a hyperbolic dependence on NO(2)(-) concentration, with a k(cat1) of 6.8 ± 0.3 s(-1) and a K(m1) of 7.6 ± 0.9 mM. HAO also catalyzed the reduction of NH(2)OH by MV(red), with a hyperbolic dependence on NH(2)OH concentration, and a k(cat2) of 245 ± 3 s(-1) and a K(m2) of 6.8 ± 0.2 mM (k(cat1) and k(cat2) reflect the maximum number of electrons transferred from MV(red) per second). We had previously demonstrated that HAO catalyzes the reduction of NO by MV(red) to yield first NH(2)OH and then NH(4)(+). Thus, overall, HAO is seen to act like a cytochrome c nitrite reductase, which catalyzes the six-electron reduction of NO(2)(-) to NH(4)(+) by MV(red). In the presence of Ru(NH(3))(2+) (Ru(II)) and Ru(NH(3))(3+) (Ru(III)) at ratios exceeding 200:1, HAO exhibited no detectable Ru(II)-NO(2)(-) oxidoreductase activity, though such activity is thermodynamically favored. On the other hand, HAO could still catalyze the oxidation of NH(2)OH to NO by Ru(III) under these conditions. The oxidative process exhibited a hyperbolic dependence on NH(2)OH concentration, with a k(cat3) of 98 ± 3 s(-1) and a K(m3) of 5.2 ± 0.8 µM. Finally, HAO was found not to catalyze the disproportionation of NH(2)OH, despite the thermodynamic favorability of such a process, and the apparent opportunity presented by the HAO structure. Mechanisms are proposed to explain all the kinetic data.


Asunto(s)
Amoníaco/metabolismo , Nitritos/metabolismo , Nitrosomonas europaea/enzimología , Oxidorreductasas/metabolismo , Animales , Catalasa/metabolismo , Hidroxilamina/metabolismo , Oxidación-Reducción
14.
J Biol Inorg Chem ; 15(5): 749-58, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20229092

RESUMEN

The protein OmcA from the bacterium Shewanella oneidensis was purified to homogeneity, and characterized using UV-vis spectroelectrochemistry, EPR, and circular dichroism (far- and near-UV regions). EPR spectroscopy showed that many different c-type hemes are present in the protein: high-spin, low-spin, and highly anisotropic low-spin hemes were all detected. The protein was shown to bind tightly to artificial membranes (liposomes) composed of dioleoylphosphatidylglycerol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (60:40 molar ratio), which mimic the natural environment. However, on the basis of the spectroscopic and electrochemical studies, binding to liposomes does not appear to significantly alter either the structure or the properties of OmcA. On the other hand, the electrochemical properties of OmcA are noticeably changed in the presence of the detergents used during the initial purification stages. In particular, the reduction potentials of two out of the ten OmcA hemes appear to shift in the presence of detergent, perhaps because these hemes are solvent-exposed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Detergentes/química , Detergentes/farmacología , Liposomas/química , Liposomas/farmacología , Shewanella/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Sitios de Unión , Electroquímica , Espectroscopía de Resonancia por Spin del Electrón , Espectrofotometría Ultravioleta
15.
J Biol Inorg Chem ; 13(7): 1073-83, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18553112

RESUMEN

Hydroxylamine oxidoreductase (HAO) from the ammonia-oxidizing bacterium Nitrosomonas europaea normally catalyzes the four-electron oxidation of hydroxylamine to nitrite, which is the second step in ammonia-dependent respiration. Here we show that, in the presence of methyl viologen monocation radical (MV(red)), HAO can catalyze the reduction of nitric oxide to ammonia. The process is analogous to that catalyzed by cytochrome c nitrite reductase, an enzyme found in some bacteria that use nitrite as a terminal electron acceptor during anaerobic respiration. The availability of a reduction pathway to ammonia is an important factor to consider when designing in vitro studies of HAO, and may also have some physiological relevance. The reduction of nitric oxide to ammonia proceeds in two kinetically distinct steps: nitric oxide is first reduced to hydroxylamine, and then hydroxylamine is reduced to ammonia at a tenfold slower rate. The second step was investigated independently in solutions initially containing hydroxylamine, MV(red), and HAO. Both steps show first-order dependence on nitric oxide and HAO concentrations, and zero-order dependence on MV(red) concentration. The rate constants governing each reduction step were found to have values of (4.7 +/- 0.3) x 10(5) and (2.06 +/- 0.04) x 10(4) M(-1) s(-1), respectively. A second reduction pathway, with second-order dependence on nitric oxide, may become available as the concentration of nitric oxide is increased. Such a pathway might lead to production of nitrous oxide. We estimate a maximum value of (1.5 +/- 0.05) x 10(10) M(-2) s(-1) for the rate constant of the alternative pathway, which is small and suggests that the pathway is not physiologically important.


Asunto(s)
Nitrosomonas europaea/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Biocatálisis , Hidroxilamina/metabolismo , Cinética , Modelos Moleculares , Dióxido de Nitrógeno/metabolismo , Oxidación-Reducción , Conformación Proteica , Compuestos de Amonio Cuaternario/metabolismo
16.
J Phys Chem A ; 111(7): 1207-13, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17266287

RESUMEN

N,N'-Bis(carboxymethyl)-N,N'-dinitroso-1,4-phenylenediamine (1) fragments to release 1 equiv of NO* and the denitrosated radical of 1 (2), when exposed to a approximately 10 ns, 308 nm laser pulse. Species 2 can fragment to give another equivalent of NO* and the doubly denitrosated quinoimine derivative of 1 (3), it can recombine with NO* to give 1 and ring-nitrosated isomers of 1, or in the presence of a reducing agent, 2 can be reduced (to species 4). Photogenerated NO* can be used to probe fast reactions of biochemical interest, making 1 a valuable research tool. This paper focuses on the chemistry of 2, whose reactivity must be well characterized if 1 is to be used to its full potential. [Ru(NH3)6]2+ (RuII) and [Fe(CN)6]4- (FeII) were both shown to reduce 2, with bimolecular rate constants in the diffusion limit. When solutions initially containing 70 microM of RuII, 20 microM myoglobin (Mb) and varying amounts of 1 were irradiated, the only Mb reaction product was nitrosomyoglobin (MbNO). In contrast, in solutions containing only Mb and 1, Mb is converted to both MbNO and oxidized myoglobin (metMb). When FeII was used in place of RuII, Mb was oxidized to metMb, but approximately 100x more slowly than in solutions containing only Mb and 1. This showed that 2 first oxidized FeII to [Fe(CN)6]3- (FeIII), which then oxidized Mb at the slower rate. The ratio metMb/MbNO obtained in the experiments with FeII was 0.6, whereas the ratio predicted from previously known chemistry of 2 was approximately 1 under the experimental conditions. The result is explained if, upon photolysis, 1 first forms a caged encounter complex [2, NO*], which fragments to give 3 and 2 equiv of NO*, without ever releasing free 2 into solution. This hypothesis was further strengthened by analyzing the amount of NO* generated by photolysis of 1 in the absence of added reductant. The original mechanism underestimates the NO* generated, a problem solved by invoking direct release of NO* and 3 from photolysis of 1.

17.
Biochemistry ; 44(6): 1856-63, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15697211

RESUMEN

We report results of continuum electrostatics calculations of the cofactor redox potentials, and of the titratable group pK(a) values, in hydroxylamine oxidoreductase (HAO). A picture of a sophisticated multicomponent control of electron flow in the protein emerged from the studies. First, we found that neighboring heme cofactors strongly interact electrostatically, with energies of 50-100 mV. Thus, cofactor redox potentials depend on the oxidation state of other cofactors, and cofactor redox potentials in the active (partially oxidized) enzyme differ substantially from the values obtained in electrochemical redox titration experiments. We found that, together, solvent-exposed heme 1 (having a large negative redox potential) and heme 2 (having a large positive redox potential) form a lock for electrons generated during the oxidation reaction The attachment of HAO's physiological electron transfer partner cytochrome c(554) results in a positive shift in the redox potential of heme 1, and "opens the electron gate". Electrons generated as a result of hydroxylamine oxidation travel to heme 3 and heme 8, which have redox potentials close to 0 mV versus NHE (this result is in partial disagreement with an existing experimental redox potential assignment). The closeness of hemes 3 and 8 from different enzyme subunits allows redistribution of the four electrons generated as a result of hydroxylamine oxidation, among the three enzyme subunits. For the multielectron oxidation process to be maximally efficient, the redox potentials of the electron-accepting cofactors should be roughly equal, and electrostatic interactions between extra electrons on these cofactors should be minimal. The redox potential assignments presented in the paper satisfy this general rule.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Simulación por Computador , Transporte de Electrón , Hemo/química , Hemo/metabolismo , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Potenciometría , Protones , Electricidad Estática
18.
Inorg Chem ; 44(2): 225-31, 2005 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-15651867

RESUMEN

Hydroxylamine-cytochrome c554 oxidoreductase (HAO) catalyzes the 4-e(-) oxidation of NH(2)OH to NO(2)(-) by cytochrome c554. The electrons are transferred from NH(2)OH to a 5-coordinate heme known as P(460), the active site of HAO. From P(460), c-type hemes transport the electrons through the enzyme to a remote solvent-exposed c-heme, where cyt c554 reduction occurs. When 3-60 microM NO* are photogenerated by laser flash photolysis of N,N'-bis-(carboxymethyl)-N,N'-dinitroso-1,4-phenylenediamine, in a solution containing approximately 1 microM HAO prereduced by 3 e(-)/subunit, the HAO c-heme pool is subsequently oxidized by up to 1 e(-)/HAO subunit. The reaction rate for HAO oxidation shows first-order dependence on [HAO], and zero-order dependence on [NO*] (k(obs) = 1250 +/- 150 s(-)(1)). However, the total HAO oxidized shows hyperbolic dependence on [NO*]. We suggest that NO* first binds reversibly to P(460) giving a {Fe(NO)}(6) moiety. Intramolecular electron transfer (IET) from the c-heme pool then reduces P(460) to {Fe(NO)}.(7) The overall binding constant (K) for formation of {Fe(NO)}(7) from free NO* and 3-e(-) reduced HAO was measured at (7.7 +/- 0.6) x10(4) M(-1). This value is larger than that for typical ferriheme proteins ( approximately 10(4) M(-1)), but much smaller than that for the corresponding ferroheme proteins ( approximately 10(11) M(-1)). The final product generated by nitrosylating 3-e(-) reduced HAO is believed to be the same species obtained by adding NH(2)OH to the fully oxidized enzyme. The experiments described herein suggest that when NH(2)OH and HAO first react, only two of the NH(2)OH electrons end up in the c-heme pool. The other two remain at P(460) as part of an {Fe(NO)}(7) moiety. These results are discussed in relation to earlier studies that investigated the effect of putting fully oxidized and fully reduced HAO under 1 atm of NO*.


Asunto(s)
Grupo Citocromo c/química , Hemo/metabolismo , Nitrosomonas europaea/enzimología , Oxidorreductasas/química , Catálisis , Grupo Citocromo c/metabolismo , Transporte de Electrón , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/química , Cinética , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Conformación Proteica , Termodinámica
19.
Inorg Chem ; 42(2): 270-2, 2003 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-12693206

RESUMEN

Hydroxylamine oxidoreductase (HAO) from the autotrophic bacterium Nitrosomonas europaea catalyzes the 4-e- oxidation of NH2-OH to NO2-. The e- are transferred from NH2OH to an unusual 5-coordinate heme known as P460, which is the active site of HAO, and from there to an array of seven c-type hemes. NO., generated by laser flash photolysis of N,N'-bis(carboxymethyl)-N,N'-dinitroso-1,4-phenylenediamine, is found to act as a 1-e- donor to HAO. Most likely NO. binds P460 to yield a [Fe(NO)]6 moiety, which then hydrolyzes to give the reduced enzyme and NO2-. The [Fe(NO)]6 moiety is also a plausible final intermediate in the oxidation of NH2OH.


Asunto(s)
Hemo/metabolismo , Nitrosomonas/enzimología , Oxidorreductasas/metabolismo , Catálisis , Transporte de Electrón , Hidrólisis , Hidroxilamina/química , Hidroxilamina/metabolismo , Estructura Molecular , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Dióxido de Nitrógeno/química , Dióxido de Nitrógeno/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...