Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Ergon ; 106: 103877, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36095895

RESUMEN

In the past few years, companies have started considering the adoption of upper-limb occupational exoskeletons as a solution to reduce the health and cost issues associated with work-related shoulder overuse injuries. Most of the previous research studies have evaluated the efficacy of these devices in laboratories by measuring the reduction in muscle exertion resulting from device use in stereotyped tasks and controlled conditions. However, to date, uncertainties exist about generalizing laboratory results to more realistic conditions of use. The current study aims to investigate the in-field efficacy (through electromyography and perceived exertion), usability, and acceptance of a commercial spring-loaded upper-limb exoskeleton in cleaning job activities. The operators were required to maintain prolonged overhead postures while holding and moving a pole equipped with tools for window and ceiling cleaning. Compared to the normal working condition, the exoskeleton significantly reduced the total shoulder muscle activity (∼17%), the activity of the anterior deltoid (∼26%), medial deltoid (∼28%), and upper trapezius (∼24%). With the exoskeleton, the operators perceived reduced global effort (∼17%) as well as a reduced local effort in the shoulder (∼18%), arm (∼22%), upper back (∼14%), and lower back (∼16%). The beneficial effect of the exoskeleton and its suitability in cleaning settings are corroborated by the acceptance and usability scores assigned by operators, which averaged ∼5.5 out of 7 points. To the authors' knowledge, this study is the first to present an experience of exoskeleton use in cleaning contexts. The outcomes of this research invite further studies to test occupational exoskeletons in various realistic applications to foster scientific-grounded ergonomic evaluations and encourage the informed adoption of the technology.


Asunto(s)
Dispositivo Exoesqueleto , Músculos Superficiales de la Espalda , Humanos , Electromiografía , Extremidad Superior/fisiología , Hombro/fisiología , Músculo Esquelético/fisiología , Fenómenos Biomecánicos
2.
Appl Ergon ; 101: 103679, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066399

RESUMEN

This case-series study aims to investigate the effects of a passive shoulder support exoskeleton on experienced workers during their regular work shifts in an enclosures production site. Experimental activities included three sessions, two of which were conducted in-field (namely, at two workstations of the painting line, where panels were mounted and dismounted from the line; each session involved three participants), and one session was carried out in a realistic simulated environment (namely, the workstations were recreated in a laboratory; this session involved four participants). The effect of the exoskeleton was evaluated through electromyographic activity and perceived effort. After in-field sessions, device usability and user acceptance were also assessed. Data were reported individually for each participant. Results showed that the use of the exoskeleton reduced the total shoulder muscular activity compared to normal working conditions, in all subjects and experimental sessions. Similarly, the use of the exoskeleton resulted in reductions of the perceived effort in the shoulder, arm, and lower back. Overall, participants indicated high usability and acceptance of the device. This case series invites larger validation studies, also in diverse operational contexts.


Asunto(s)
Dispositivo Exoesqueleto , Fenómenos Biomecánicos , Humanos , Hombro , Extremidad Superior
3.
Wearable Technol ; 2: e11, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-38486625

RESUMEN

The large-scale adoption of occupational exoskeletons (OEs) will only happen if clear evidence of effectiveness of the devices is available. Performing product-specific field validation studies would allow the stakeholders and decision-makers (e.g., employers, ergonomists, health, and safety departments) to assess OEs' effectiveness in their specific work contexts and with experienced workers, who could further provide useful insights on practical issues related to exoskeleton daily use. This paper reviews present-day scientific methods for assessing the effectiveness of OEs in laboratory and field studies, and presents the vision of the authors on a roadmap that could lead to large-scale adoption of this technology. The analysis of the state-of-the-art shows methodological differences between laboratory and field studies. While the former are more extensively reported in scientific papers, they exhibit limited generalizability of the findings to real-world scenarios. On the contrary, field studies are limited in sample sizes and frequently focused only on subjective metrics. We propose a roadmap to promote large-scale knowledge-based adoption of OEs. It details that the analysis of the costs and benefits of this technology should be communicated to all stakeholders to facilitate informed decision making, so that each stakeholder can develop their specific role regarding this innovation. Large-scale field studies can help identify and monitor the possible side-effects related to exoskeleton use in real work situations, as well as provide a comprehensive scientific knowledge base to support the revision of ergonomics risk-assessment methods, safety standards and regulations, and the definition of guidelines and practices for the selection and use of OEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...