Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 810: 152252, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34896493

RESUMEN

Ocean acidification (OA) is one of the most critical anthropogenic threats to marine ecosystems. While significant ecological responses of plankton communities to OA have been revealed mainly by small-scale laboratory approaches, the interactive effect of OA-related changes on zooplankton metabolism and their biogeochemical implications in the natural environment still remains less well understood. Here, we explore the responses of zooplankton respiration and ammonium excretion, two key processes in the nutrient cycling, to high pCO2 levels in a 9-week in situ mesocosm experiment conducted during the autumn oligotrophic season in the subtropical northeast Atlantic. By simulating an upwelling event halfway through the study, we further evaluated the combined effects of OA and nutrient availability on the physiology of micro-and mesozooplankton. OA conditions generally resulted in a reduction in the biomass-specific metabolic and enzymatic rates, particularly in the mesozooplankton community. The situation reversed after the nutrient-rich deep-water addition, which initially promoted a diatom bloom and increased heterotrophic activities in all mesocosms. Under high pCO2 conditions (>800 µatm), however, the nutrient fertilization triggered the proliferation of the harmful alga Vicicitus globosus, with important consequences for the metabolic performance of the two zooplankton size classes. Here, the zooplankton contribution to the remineralization of organic matter and nitrogen regeneration dropped by 30% and 24%, respectively, during the oligotrophic period, and by 40% and 70% during simulated upwelling. Overall, our results indicate a potential reduction in the biogeochemical role of zooplankton under future ocean conditions, with more evident effects on the large mesozooplankton and during high productivity events.


Asunto(s)
Ecosistema , Zooplancton , Animales , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
2.
Mar Pollut Bull ; 129(1): 61-69, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29680568

RESUMEN

Microplastics are small plastic particles, globally distributed throughout the oceans. To properly study them, all the methodologies for their sampling, extraction, and measurement should be standardized. For heterogeneous samples containing sediments, animal tissues and zooplankton, several procedures have been described. However, definitive methodologies for samples, rich in algae and plant material, have not yet been developed. The aim of this study was to find the best extraction protocol for vegetal-rich samples by comparing the efficacies of five previously described digestion methods, and a novel density separation method. A protocol using 96% ethanol for density separation was better than the five digestion methods tested, even better than using H2O2 digestion. As it was the most efficient, simple, safe and inexpensive method for isolating microplastics from vegetal rich samples, we recommend it as a standard separation method.


Asunto(s)
Fraccionamiento Químico/métodos , Monitoreo del Ambiente/métodos , Plásticos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Ácidos/química , Álcalis/química , Animales , Organismos Acuáticos/química , Etanol/química , Peróxido de Hidrógeno/química , Soluciones
3.
Protist ; 167(2): 136-47, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26994731

RESUMEN

Respiratory oxygen consumption rate (RO2) and potential respiration (Φ) has been monitored during a food deprivation period in the heterotrophic dinoflagellate Oxyrrhis marina. Φ was determined by measuring the activity of the enzymes from the electron transport system (ETS), the major contributor to the oxygen consumption in the cells. Additionally, we have quantified for the first time the concentration of pyridine nucleotides in this organism, both in their oxidized (NAD(P)(+)) and reduced forms (NAD(P)H). These molecules are the main electron donors at the beginning of the ETS. We observed a dramatic decrease in RO2 within the first days, whereas Φ steadily, but more gradually declined during the entire experiment. This led to a decrease of the RO2 /Φ with time. The intracellular total pool of NAD and NADP concentration, in turn, dropped exponentially in a manner parallel to the RO2. This strong decrease was mainly driven by a reduction in the concentration of the oxidized forms. The present work constitutes a first step in clarifying the role of intracellular NAD and NADP concentrations and the redox status in the control of in vivo RO2 in marine organisms.


Asunto(s)
Dinoflagelados/metabolismo , Transporte de Electrón/fisiología , NADP/metabolismo , Consumo de Oxígeno/fisiología , Inanición/fisiopatología , Zooplancton/metabolismo , Animales , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...