Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 167, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310137

RESUMEN

Tides in the Arctic Ocean affect ocean circulation and mixing, and sea ice dynamics and thermodynamics. However, there is a limited network of available in situ tidal coefficient data for understanding tidal variability in the Arctic Ocean; e.g., the global TICON-3 database contains only 111 sites above 60°N and 21 above 70°N. At the same time, the presence of sea ice and latitude limits of satellite altimetry complicate altimetry-based retrievals of Arctic tidal coefficients. This leads to a reliance on ocean tide models whose accuracy depend on having sufficient in situ data for validation and assimilation. Here, we present a comprehensive new dataset of tidal constituents in the Arctic region, combining analyses of in situ measurements from tide gauges, ocean bottom pressure sensors and GNSS interferometric reflectometry. The new dataset contains 914 measurement sites above 60°N and 399 above 70°N, with each site being quality-assessed and expert guidance provided to help maximise the usage of the dataset. We also compare the dataset to recent tide models.

2.
Nat Geosci ; 11(2): 121-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29333198

RESUMEN

Satellite observations over the past two decades have revealed increasing loss of grounded ice in West Antarctica, associated with floating ice shelves that have been thinning. Thinning reduces an ice-shelf's ability to restrain grounded-ice discharge, yet our understanding of the climate processes that drive mass changes is limited. Here, we use ice-shelf height data from four satellite altimeter missions (1994-2017) to show a direct link between ice-shelf-height variability in the Antarctic Pacific sector and changes in regional atmospheric circulation driven by the El Niño-Southern Oscillation. This link is strongest from Dotson to Ross ice shelves and weaker elsewhere. During intense El Niño years, height increase by accumulation exceeds the height decrease by basal melting, but net ice-shelf mass declines as basal ice loss exceeds lower-density snow gain. Our results demonstrate a substantial response of Amundsen Sea ice shelves to global and regional climate variability, with rates of change in height and mass on interannual timescales that can be comparable to the longer-term trend, and with mass changes from surface accumulation offsetting a significant fraction of the changes in basal melting. This implies that ice-shelf height and mass variability will increase as interannual atmospheric variability increases in a warming climate.

3.
Nature ; 484(7395): 502-5, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22538614

RESUMEN

Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...