Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400481, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252662

RESUMEN

Orthorhombic perovskite GdFeO3 nanostructures are promising materials with multiferroic properties. In this study, a new low-temperature plasma-assisted approach is developed via dual anodic dissolution of solid metallic precursors for the preparation of perovskite GdFeO3 nanoparticles (NPs) that can be collected both as colloids as well as deposited as a thin film on a substrate. Two solid metallic foils of Gd and Fe are used as precursors, adding to the simplicity and sustainability of the method. The formation of the orthorhombic perovskite GdFeO3 phase is supported by high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman measurements, while a uniform elemental distribution of Gd, Fe, and O is confirmed by energy dispersive X-ray spectroscopy, proving the successful preparation of ternary compound NPs. The magnetic properties of the NPs show zero remnant magnetization typical of antiferromagnetic materials, and saturation at high fields that can be caused by spin interaction between Gd and Fe magnetic sublattices. The formation mechanism of ternary compound NPs in this novel plasma-assisted method is also discussed. This method is also modified to demonstrate the direct one-step deposition of thin films, opening up opportunities for their future applications in the fabrication of magnetic memory devices and gas sensors.

2.
J Phys Chem Lett ; 15(15): 4185-4190, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38597921

RESUMEN

This study examines the effect of quantum confinement and surface orientations on the electronic properties of NiO quantum dots. It compares NiO nanocrystals produced via atmospheric-pressure microplasma and femtosecond laser (fs-laser) ablation in water, finding that both methods yield quantum-confined nanocrystals with a defined face-centered cubic lattice. Notably, fs-laser synthesis generates crystalline nanocrystals from both crystalline and amorphous targets. While the electronic properties, i.e., energy of the highest occupied molecular orbital and lowest unoccupied molecular orbital (LUMO), of microplasma-synthesized NiO nanocrystals are consistent with the literature, the electronic characteristics of NiO nanocrystals produced by a fs-laser, particularly the high-lying LUMO level, are unusual for NiO quantum dots. Supported by density functional theory calculations, we show that the observed level positions are related to the different polar and nonpolar faces of the nanocrystal surface.

3.
Nanotechnology ; 30(45): 455603, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31207585

RESUMEN

This is the first study on the deployment of direct current atmospheric pressure microplasma technique for the single step synthesis of gold nanoparticle/graphene oxide (AuNP/GO) nanocomposites. The nanocomposites were characterized using ultraviolet-visible spectroscopy (UV-vis), x-ray diffraction and x-ray photoelectron spectroscopy and their formation mechanisms have been discussed in detail. Our AuNP/GO nanocomposites are highly biocompatible and have demonstrated surface enhanced Raman scattering (SERS) properties as compared to pure AuNPs and pure GO. Their potential as SERS substrate has been further demonstrated using probe molecules (methylene blue) at different concentrations.

4.
Nanoscale ; 11(1): 98-108, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30303201

RESUMEN

Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates using plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(ii) diamine diketonate precursor. Growth experiments yielded ß-MnO2 with a hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation also enabled a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA