Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Proteomics ; 295: 105088, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38237666

RESUMEN

Leishmania parasites cause a spectrum of diseases termed leishmaniasis, which manifests in two main clinical forms, cutaneous and visceral leishmaniasis. Leishmania promastigotes transit from proliferative exponential to quiescent stationary phases inside the insect vector, a relevant step that recapitulates early molecular events of metacyclogenesis. During the insect blood meal of the mammalian hosts, the released parasites interact initially with the skin, an event marked by temperature changes. Deep knowledge on the molecular events activated during Leishmania-host interactions in each step is crucial to develop better therapies and to understand the pathogenesis. In this study, the proteomes of Leishmania (Leishmania) amazonensis (La), Leishmania (Viannia) braziliensis (Lb), and Leishmania (Leishmania) infantum (syn L. L. chagasi) (Lc) were analyzed using quantitative proteomics to uncover the proteome modulation in three different conditions related to growth phases and temperature shifts: 1) exponential phase (Exp); 2) stationary phase (Sta25) and; 3) stationary phase subjected to heat stress (Sta34). Functional validations were performed using orthogonal techniques, focusing on α-tubulin, gp63 and heat shock proteins (HSPs). Species-specific and condition-specific modulation highlights the plasticity of the Leishmania proteome, showing that pathways related to metabolism and cytoskeleton are significantly modulated from exponential to stationary growth phases, while protein folding, unfolded protein binding, signaling and microtubule-based movement were differentially altered during temperature shifts. This study provides an in-depth proteome analysis of three Leishmania spp., and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts. SIGNIFICANCE: Leishmaniasis disease manifests in two main clinical forms according to the infecting Leishmania species and host immune responses, cutaneous and visceral leishmaniasis. In Brazil, cutaneous leishmaniasis (CL) is associated with L. braziliensis and L. amazonensis, while visceral leishmaniasis, also called kala-azar, is caused by L. infantum. Leishmania parasites remodel their proteomes during growth phase transition and changes in their mileu imposed by the host, including temperature. In this study, we performed a quantitative mass spectrometry-based proteomics to compare the proteome of three New world Leishmania species, L. amazonensis (La), L. braziliensis (Lb) and L. infantum (syn L. chagasi) (Lc) in three conditions: a) exponential phase at 25 °C (Exp); b) stationary phase at 25 °C (Sta25) and; c) stationary phase subjected to temperature stress at 34 °C (Sta34). This study provides an in-depth proteome analysis of three Leishmania spp. with varying pathophysiological outcomes, and contributes compelling evidence of the molecular alterations of these parasites in conditions mimicking the interaction of the parasites with the insect vector and vertebrate hosts.


Asunto(s)
Leishmania braziliensis , Leishmania infantum , Leishmaniasis Cutánea , Leishmaniasis Visceral , Parásitos , Animales , Leishmania infantum/metabolismo , Proteoma/metabolismo , Temperatura , Leishmaniasis Cutánea/parasitología , Mamíferos
2.
Proteomes ; 10(2)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35466238

RESUMEN

Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on ß-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.

3.
Biol Res ; 55(1): 7, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35184754

RESUMEN

BACKGROUND: Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic-degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H2O2. METHODS: Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZoxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H2O2. The effects of these oxidants on gene expression (qRT-PCR) and the proteome (LC-MS/MS) were quantified. RESULTS: P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR, ahpC, ahpF, kat, trxB, dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli. The LB400 genome also harbors the soxR, fumC, acnA, sodB, fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli. The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa ΔsoxR. Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR, ahpC1, katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR, fumC, ahpC1, sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR-regulated antioxidant response. CONCLUSIONS: This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2.


Asunto(s)
Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderiaceae , Cromatografía Liquida , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrógeno/farmacología , Oxidación-Reducción , Estrés Oxidativo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Espectrometría de Masas en Tándem
4.
Antioxidants (Basel) ; 11(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35204161

RESUMEN

In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO.

5.
Biol. Res ; 55: 7-7, 2022. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1383911

RESUMEN

BACKGROUND: Aerobic metabolism generates reactive oxygen species that may cause critical harm to the cell. The aim of this study is the characterization of the stress responses in the model aromatic degrading bacterium Paraburkholderia xenovorans LB400 to the oxidizing agents paraquat and H 2 O2. METHODS: Antioxidant genes were identified by bioinformatic methods in the genome of P. xenovorans LB400, and the phylogeny of its OxyR and SoxR transcriptional regulators were studied. Functionality of the transcriptional regulators from strain LB400 was assessed by complementation with LB400 SoxR of null mutant P. aeruginosa ΔsoxR, and the construction of P. xenovorans pIZ oxyR that overexpresses OxyR. The effects of oxidizing agents on P. xenovorans were studied measuring bacterial susceptibility, survival and ROS formation after exposure to paraquat and H 2 O2. The effects of these oxidants on gene expression (qRT PCR) and the proteome (LC-MS/MS) were quantified. RESULTS: P. xenovorans LB400 possesses a wide repertoire of genes for the antioxidant defense including the oxyR , ahpC , ahpF , kat , trxB , dpsA and gorA genes, whose orthologous genes are regulated by the transcriptional regulator OxyR in E. coli . The LB400 genome also harbors the soxR, fumC , acnA , sodB , fpr and fldX genes, whose orthologous genes are regulated by the transcriptional regulator SoxR in E. coli . The functionality of the LB400 soxR gene was confirmed by complementation of null mutant P. aeruginosa Δ soxR . Growth, susceptibility, and ROS formation assays revealed that LB400 cells were more susceptible to paraquat than H2O2. Transcriptional analyses indicated the upregulation of the oxyR , ahpC1 , katE and ohrB genes in LB400 cells after exposure to H2O2, whereas the oxyR , fumC , ahpC1 , sodB1 and ohrB genes were induced in presence of paraquat. Proteome analysis revealed that paraquat induced the oxidative stress response proteins AhpCF and DpsA, the universal stress protein UspA and the RNA chaperone CspA. Both oxidizing agents induced the Ohr protein, which is involved in organic peroxide resistance. Notably, the overexpression of the LB400 oxyR gene in P. xenovorans significantly decreased the ROS formation and the susceptibility to paraquat, suggesting a broad OxyR regulated antioxidant response. CONCLUSIONS: This study showed that P. xenovorans LB400 possess a broad range oxidative stress response, which explain the high resistance of this strain to the oxidizing compounds paraquat and H2O2.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oxidación-Reducción , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatografía Liquida , Estrés Oxidativo , Burkholderiaceae , Escherichia coli/genética , Espectrometría de Masas en Tándem , Peróxido de Hidrógeno/farmacología
7.
J Proteomics ; 232: 104077, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33309930

RESUMEN

The role of Leishmania braziliensis in the development of different clinical forms of American Tegumentary Leishmaniasis (ATL) is unclear, but it has been suggested that molecules secreted/released by parasites could modulate the clinical outcome. Here, we analyzed the infection rate and cytokine profile of macrophages pretreated with the secretome of two L. braziliensis strains associated with polar clinical forms of ATL: one associated with localized self-healing cutaneous leishmaniasis (LCL) and other associated with the disseminated form (DL). Besides, we use an iTRAQ-based quantitative proteomics approach to compare the abundance of proteins secreted by those strains. In vitro infection demonstrated that pretreatment with secretome resulted in higher number of infected macrophages, as well as higher number of amastigotes per cell. Additionally, macrophages pretreated with LCL secretome exhibited a proinflammatory profile, whereas those pretreated with the DL one did not. These findings suggest that secretomes made macrophages more susceptible to infection and that molecules secreted by each strain modulate, differentially, the macrophages' cytokine profile. Indeed, proteomics analysis showed that the DL secretome is rich in molecules involved in macrophage deactivation, while is poor in proteins that activate proinflammatory pathways. Together, our results reveal new molecules that may contribute to the infection, persistence and dissemination of the parasite. SIGNIFICANCE: Leishmania braziliensis is associated to localized self-healing cutaneous lesions (LCL), disseminated leishmaniasis (DL), and mucocutaneous lesions (MCL). To understand the role of the parasite in those distinct clinical manifestations we evaluated infection rates and cytokine profiles of macrophages pre-treated with secretomes of two L. braziliensis strains associated with DL and LCL, and quantitatively compared these secretomes. The infection index of macrophages pretreated with the DL secretome was significantly higher than that exhibited by non-treated cells. Interestingly, whereas the LCL secretome stimulated a proinflammatory setting, favoring an effector cell response that would explain the proper resolution of the disease caused by this strain, the DL strain was not able to elicit such response or has mechanisms to prevent this activation. Indeed, DL secretome is rich in peptidases that may deactivate cell pathways crucial for parasite elimination, while is poor in proteins that could activate proinflammatory pathways, favoring parasite infection and persistence.


Asunto(s)
Leishmania braziliensis , Leishmaniasis Cutánea , Transporte Biológico , Humanos , Macrófagos , Estados Unidos
8.
PLoS Negl Trop Dis ; 14(8): e0008509, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32804927

RESUMEN

Leishmania species are responsible for a broad spectrum of diseases, denominated Leishmaniasis, affecting over 12 million people worldwide. During the last decade, there have been impressive efforts for sequencing the genome of most of the pathogenic Leishmania spp. as well as hundreds of strains, but large-scale proteomics analyses did not follow these achievements and the Leishmania proteome remained mostly uncharacterized. Here, we report a comprehensive comparative study of the proteomes of strains representing L. braziliensis, L. panamensis and L. guyanensis species. Proteins extracted by SDS-mediated lysis were processed following the multi-enzyme digestion-filter aided sample preparation (FASP) procedure and analysed by high accuracy mass spectrometry. "Total Protein Approach" and "Proteomic Ruler" were applied for absolute quantification of proteins. Principal component analysis demonstrated very high reproducibility among biological replicates and a very clear differentiation of the three species. Our dataset comprises near 7000 proteins, representing the most complete Leishmania proteome yet known, and provides a comprehensive quantitative picture of the proteomes of the three species in terms of protein concentration and copy numbers. Analysis of the abundance of proteins from the major energy metabolic processes allow us to highlight remarkably differences among the species and suggest that these parasites depend on distinct energy substrates to obtain ATP. Whereas L. braziliensis relies the more on glycolysis, L. panamensis and L. guyanensis seem to depend mainly on mitochondrial respiration. These results were confirmed by biochemical assays showing opposite profiles for glucose uptake and O2 consumption in these species. In addition, we provide quantitative data about different membrane proteins, transporters, and lipids, all of which contribute for significant species-specific differences and provide rich substrate for explore new molecules for diagnosing purposes. Data are available via ProteomeXchange with identifier PXD017696.


Asunto(s)
Leishmania/metabolismo , Proteínas Protozoarias/metabolismo , Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Leishmania/genética , Consumo de Oxígeno , Proteómica , Proteínas Protozoarias/genética , Especificidad de la Especie
9.
Mol Cell Biochem ; 470(1-2): 63-75, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32405972

RESUMEN

Casein-kinase CK2 is a Ser/Thr protein kinase that fosters cell survival and proliferation of malignant cells. The CK2 holoenzyme, formed by the association of two catalytic alpha/alpha' (CK2α/CK2α') and two regulatory beta subunits (CK2ß), phosphorylates diverse intracellular proteins partaking in key cellular processes. A handful of such CK2 substrates have been identified as targets for the substrate-binding anticancer peptide CIGB-300. However, since CK2ß also contains a CK2 phosphorylation consensus motif, this peptide may also directly impinge on CK2 enzymatic activity, thus globally modifying the CK2-dependent phosphoproteome. To address such a possibility, firstly, we evaluated the potential interaction of CIGB-300 with CK2 subunits, both in cell-free assays and cellular lysates, as well as its effect on CK2 enzymatic activity. Then, we performed a phosphoproteomic survey focusing on early inhibitory events triggered by CIGB-300 and identified those CK2 substrates significantly inhibited along with disturbed cellular processes. Altogether, we provided here the first evidence for a direct impairment of CK2 enzymatic activity by CIGB-300. Of note, both CK2-mediated inhibitory mechanisms of this anticancer peptide (i.e., substrate- and enzyme-binding mechanism) may run in parallel in tumor cells and help to explain the different anti-neoplastic effects exerted by CIGB-300 in preclinical cancer models.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Quinasa de la Caseína II/metabolismo , Neoplasias Pulmonares/metabolismo , Péptidos Cíclicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Sistema Libre de Células , Regulación Neoplásica de la Expresión Génica , Humanos , Microscopía Fluorescente , Fosforilación , Unión Proteica , Proteoma , Proteínas Recombinantes/metabolismo
10.
Cell Stress Chaperones ; 25(1): 133-140, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31802366

RESUMEN

Human heat-shock protein 60 (HSP60) is an autoantigen involved in the pathogenesis of rheumatoid arthritis (RA). Epitopes derived from HSP60 can trigger activation of regulatory T cells (Treg). CIGB-814 is an altered peptide ligand (APL) derived from HSP60. In preclinical models, this peptide had anti-inflammatory effects and increased Treg. The results from phase I clinical trial indicated that CIGB-814 was safe and activated mechanisms associated with induction of tolerance. Biodistribution profile for inducers of tolerance is crucial for triggering its effects. The primary goal of this study in Lewis rats was to identify (1) the target organs of CIGB-814 and (2) the pharmacokinetics (PK) profile. 125I-CIGB-814 administered subcutaneously at three dose levels was distributed in the thyroid gland, but also at considerable levels to the stomach and small and large intestines. In addition, concentration of CIGB-814 was increased in lymph nodes (LNs) at 24 h, compared with 4-h post-administration. Small intestine and LNs are excellent sites for induction of tolerance, due to the characteristics of dendritic cells in these tissues. Maximum concentration of CIGB-814 in blood of Lewis rats at 0.5 to 1 h agrees with PK profile determined for patients. Altogether, these results support therapeutic possibilities of CIGB-814 for RA.


Asunto(s)
Chaperonina 60/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Distribución Tisular/fisiología , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Ligandos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Ratas Endogámicas Lew , Linfocitos T Reguladores/inmunología
11.
J Proteomics ; 208: 103492, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31434010

RESUMEN

Protein malnutrition is a risk factor for developing visceral leishmaniasis. Because we previously demonstrated that protein malnutrition and infection with Leishmania infantum disrupts the splenic microarchitecture in BALB/c mice, alters T cell-subsets and increases splenic parasite load, we hypothesize that splenic microenvironment is precociously compromised in infected animals that suffered a preceding malnutrition. To evaluate this, we characterized the abundance of proteins secreted in the splenic interstitial fluid (IF) using an iTRAQ-based quantitative proteomics approach. In addition, local levels of pro-inflammatory and proliferation molecules were analyzed. Whereas well-nourished infected animals showed increased IL-1ß and IL-2 levels, malnourished-infected mice displayed significant reduction of these cytokines. Remarkably, a two-weeks infection with L. infantum already modified protein abundance in the splenic IF of well-nourished mice, but malnourished animals failed to respond to infection in the same fashion. Malnutrition induced significant reduction of chemotactic and pro-inflammatory molecules as well as of proteins involved in nucleic acid and amino acid metabolism, indicating an impaired proliferative microenvironment. Accordingly, a significant decrease in Ki67 expression was observed, suggesting that splenocyte proliferation is compromised in malnourished animals. Together, our results show that malnutrition compromises the splenic microenvironment and alters the immune response to the parasite in malnourished individuals. SIGNIFICANCE: Protein malnutrition is recognized as an important epidemiological risk factor for developing visceral leishmaniasis (VL). Locally secreted factors present in the interstitial fluid have important roles in initiating immune responses and in regulating fluid volume during inflammation. However, the regulation of secreted factors under pathological conditions such as malnutrition and infection are widely unknown. To analyze how protein malnutrition alters secreted proteins involved in the immune response to L. infantum infection we evaluated the proteomic profile of the interstitial fluid of the spleen in malnourished BALB/c mice infected with L. infantum. Our work revealed new elements that contribute to the understanding of the immunopathological events in the spleen of malnourished animals infected with L. infantum and opens new pathways for consideration of other aspects that could improve VL treatment in malnourished individuals.


Asunto(s)
Proliferación Celular , Líquido Extracelular/metabolismo , Perfilación de la Expresión Génica , Leishmania infantum/metabolismo , Leishmaniasis Visceral/metabolismo , Desnutrición/metabolismo , Proteómica , Bazo/metabolismo , Animales , Líquido Extracelular/parasitología , Inflamación/metabolismo , Inflamación/parasitología , Inflamación/patología , Leishmaniasis Visceral/patología , Masculino , Desnutrición/parasitología , Desnutrición/patología , Ratones , Ratones Endogámicos BALB C , Bazo/parasitología , Bazo/patología
12.
Artículo en Inglés | MEDLINE | ID: mdl-31355153

RESUMEN

Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Desnutrición/inmunología , Linfocitos T/inmunología , Timo/inmunología , Animales , Transporte Biológico , Movimiento Celular , Proliferación Celular , Ciclo del Ácido Cítrico/genética , Ciclo del Ácido Cítrico/inmunología , Exosomas/inmunología , Exosomas/metabolismo , Exosomas/parasitología , Líquido Extracelular/inmunología , Líquido Extracelular/metabolismo , Líquido Extracelular/parasitología , Galectina 1/genética , Galectina 1/inmunología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Leishmania infantum/crecimiento & desarrollo , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/metabolismo , Leishmaniasis Visceral/parasitología , Metabolismo de los Lípidos , Masculino , Desnutrición/genética , Desnutrición/metabolismo , Desnutrición/parasitología , Ratones , Ratones Endogámicos BALB C , Plasminógeno/genética , Plasminógeno/inmunología , Proteoma/genética , Proteoma/inmunología , Linfocitos T/parasitología , Timo/metabolismo , Timo/parasitología
13.
J Proteome Res ; 17(11): 3704-3718, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239205

RESUMEN

Trichomonas vaginalis is a sexually transmitted anaerobic parasite that infects humans causing trichomoniasis, a common and ubiquitous sexually transmitted disease. The life cycle of this parasite possesses a trophozoite form without a cystic stage. However, the presence of nonproliferative and nonmotile, yet viable and reversible spherical forms with internalized flagella, denominated pseudocysts, has been commonly observed for this parasite. To understand the mechanisms involved in the formation of pseudocysts, we performed a mass spectrometry-based high-throughput quantitative proteomics study using a label-free approach and functional assays by biochemical and flow cytometric methods. We observed that the morphological transformation of trophozoite to pseudocysts is coupled to (i) a metabolic shift toward a less glycolytic phenotype; (ii) alterations in the abundance of hydrogenosomal iron-sulfur cluster (ISC) assembly machinery; (iii) increased abundance of regulatory particles of the ubiquitin-proteasome system; (iv) significant alterations in proteins involved in adhesion and cytoskeleton reorganization; and (v) arrest in G2/M phase associated with alterations in the abundance of regulatory proteins of the cell cycle. These data demonstrate that pseudocysts experience important physiological and structural alterations for survival under unfavorable environmental conditions.


Asunto(s)
Proteínas Hierro-Azufre/química , Estadios del Ciclo de Vida/genética , Proteómica/métodos , Proteínas Protozoarias/química , Trichomonas vaginalis/química , Trofozoítos/química , Citoesqueleto/química , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestructura , Puntos de Control de la Fase G2 del Ciclo Celular , Ontología de Genes , Hierro/metabolismo , Proteínas Hierro-Azufre/clasificación , Proteínas Hierro-Azufre/aislamiento & purificación , Espectrometría de Masas , Anotación de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/aislamiento & purificación , Trichomonas vaginalis/genética , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/metabolismo , Trofozoítos/genética , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo , Ubiquitina/química , Ubiquitina/aislamiento & purificación
14.
Cell Stress Chaperones ; 21(4): 735-44, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27241313

RESUMEN

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by a chronic relapsing-remitting joint inflammation. Perturbations in the balance between CD4 + T cells producing IL-17 and CD4 + CD25(high)FoxP3 + Tregs correlate with irreversible bone and cartilage destruction in RA. APL1 is an altered peptide ligand derived from a CD4+ T-cell epitope of human HSP60, an autoantigen expressed in the inflamed synovium, which increases the frequency of CD4 + CD25(high)FoxP3+ Tregs in peripheral blood mononuclear cells from RA patients. The aim of this study was to evaluate the suppressive capacity of Tregs induced by APL1 on proliferation of effector CD4+ T cells using co-culture experiments. Enhanced Treg-mediated suppression was observed in APL1-treated cultures compared with cells cultured only with media. Subsequent analyses using autologous cross-over experiments showed that the enhanced Treg suppression in APL1-treated cultures could reflect increased suppressive function of Tregs against APL1-responsive T cells. On the other hand, APL1-treatment had a significant effect reducing IL-17 levels produced by effector CD4+ T cells. Hence, this peptide has the ability to increase the frequency of Tregs and their suppressive properties whereas effector T cells produce less IL-17. Thus, we propose that APL1 therapy could help to ameliorate the pathogenic Th17/Treg balance in RA patients.


Asunto(s)
Antígenos/inmunología , Artritis Reumatoide/inmunología , Linfocitos T CD4-Positivos/inmunología , Chaperonina 60/química , Péptidos/farmacología , Linfocitos T Reguladores/inmunología , Adulto , Anciano , Artritis Reumatoide/patología , Linfocitos T CD4-Positivos/efectos de los fármacos , Separación Celular , Células Cultivadas , Humanos , Ligandos , Activación de Linfocitos/efectos de los fármacos , Recuento de Linfocitos , Persona de Mediana Edad , Fenotipo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/efectos de los fármacos , Adulto Joven
15.
Parasitol Res ; 115(5): 1977-89, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26850722

RESUMEN

Anopheles (Nyssorhynchus) aquasalis is a malaria vector mainly distributed along the coastal regions of South and Central America. In the absence of an effective vaccine against malaria, strategies for controlling the vector are the main tool for interrupting parasite transmission. Mechanisms of oogenesis and embryogenesis in anautogenous mosquitoes are mainly modulated by blood feeding. However, the expression, at the protein level, of genes involved in such mechanisms in sugar-fed females is unknown. In this work, total protein extracts of the reproductive tract of female An. aquasalis that were fed sugar were analyzed using liquid chromatography followed by mass spectrometry for protein identification and bioinformatic tools for data mining. We identified 922 proteins expressed in the organ, and using several databases, we attributed biological meaning for several of them. Remarkably, nine proteins involved in oogenesis were identified in females fed sugar. Putative vitellogenins, vitellogenin receptor, lipid storage droplet, transferrin, ferritin, and apolipoprotein, identified here, are proteins involved in egg development. Proteins involved in embryonic development, such as paxillin, exuperantia, several growth factors, and dorsal switch protein, were identified. Interestingly, in this study, we identified 15 peptidases of various classes such as aminopeptidases, carboxypeptidases, serine protease, cathepsin, and metalloprotease that could potentially interact with male seminal components. Here, we demonstrated that the reproductive tract of female An. aquasalis fed on sugar expresses proteins involved in oogenesis and embryonic development. These findings reveal unknown aspects of the physiology of this organ under the given nutritional conditions.


Asunto(s)
Anopheles/fisiología , Oogénesis/fisiología , Proteómica , Animales , Carbohidratos , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Reproducción
17.
Biomed Res Int ; 2015: 124082, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26576414

RESUMEN

CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552.


Asunto(s)
Péptidos de Penetración Celular/administración & dosificación , Péptidos de Penetración Celular/química , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Neoplasias Experimentales/genética , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Análisis de Secuencia de Proteína/métodos , Resultado del Tratamiento
18.
Clin Exp Med ; 15(1): 31-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24474501

RESUMEN

Juvenile idiopathic arthritis (JIA) is a heterogeneous group of diseases characterized by autoimmune arthritis of unknown cause with onset before age of 16 years. Methotrexate provides clinical benefits in JIA. For children who do not respond to methotrexate, treatment with anti-tumor necrosis factor (TNF)-α is an option. However, some patients do not respond or are intolerant to anti-TNF therapy. Induction of peripheral tolerance has long been considered a promising approach to the treatment of chronic autoimmune diseases. We aimed to evaluate the potentialities of two altered peptide ligands (APLs) derived from human heat-shock protein 60, an autoantigen involved in the pathogenesis of autoimmune arthritis, in JIA patients. Interferon (IFN)-γ, TNF-α and interleukin (IL)-10 levels were determined in ex vivo assays using peripheral blood mononuclear cells (PBMC) from these patients. Wild-type peptide and one of these APLs increased IFN-γ and TNF-α levels. Unlike, the other APLs (called APL2) increased the IL-10 level without affecting IFN-γ and TNF-α levels. On the other hand, APL2 induces a marked activation of T cells since it transforms cell cycle phase's distribution of CD4+ T cells from these patients. In addition, we evaluated the therapeutic effect of APL2 in collagen-induced arthritis model. Therapy with APL2 reduced arthritis scores and histological lesions in mice. This effect was associated to a decrease in TNF-α and IL-17 levels. These results indicate a therapeutic potentiality of APL2 for JIA.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Juvenil/inmunología , Autoantígenos/farmacología , Chaperonina 60/química , Leucocitos Mononucleares/efectos de los fármacos , Proteínas Mitocondriales/química , Péptidos/farmacología , Adolescente , Animales , Antirreumáticos/farmacología , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Juvenil/genética , Artritis Juvenil/patología , Autoantígenos/química , Chaperonina 60/genética , Chaperonina 60/inmunología , Niño , Preescolar , Regulación de la Expresión Génica , Humanos , Interferón gamma/biosíntesis , Interferón gamma/metabolismo , Interleucina-10/biosíntesis , Interleucina-10/metabolismo , Interleucina-17/antagonistas & inhibidores , Interleucina-17/biosíntesis , Interleucina-17/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/patología , Metotrexato/farmacología , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/inmunología , Péptidos/síntesis química , Tolerancia Periférica , Cultivo Primario de Células , Transducción de Señal , Sulfasalazina/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/metabolismo
19.
J Proteomics ; 107: 83-92, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-24727029

RESUMEN

Proteomics is the charming young daughter of classical protein chemistry. It was conceived in 1975, year of invention of the first proteomic technique, the procedure to separate Escherichia coli and mouse tissue proteins in a two-dimensional polyacrylamide gel. Pregnancy, however, lasted for over 10years and deliverance occurred together with sister protein mass spectrometry. Jointly, the two techniques changed protein chemistry moving it from the study of single molecular entities to whole cell extracts and fluids. This review does not propose to report state-of-the art in proteomics in Latin America but rather to describe its development with emphasis on leading Brazil and Cuba as well as discuss proteomic research in these and other countries exposing the history and stories of researchers and selected laboratories that contributed to its establishment and development in the last 20years. BIOLOGICAL SIGNIFICANCE: This manuscript accounts for the fact that proteomics was present in Latin America since its birth. However, because the political and the economic situation in the region during the eighties and nineties were not favorable for science expansion, its beginning was shy. This changed at the dawn of the 21st century in such a way that a Latin American country, Brazil, became number 10 in manuscripts published in high impact journals as the Journal of Proteomics and Proteomics in 2012/2013. Interestingly, actual prevailing research themes come from centenary protein areas of study - e.g. neglected diseases - that quickly migrated from classical protein chemistry to proteomics, especially human parasites and snake, scorpion and spider venoms. This article is part of a Special Issue entitled: "20years of Proteomics" in memory of Viatliano Pallini" Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.


Asunto(s)
Proteómica/historia , Proteómica/métodos , Animales , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , América Latina , Masculino , Ratones , Publicaciones Periódicas como Asunto/historia , Embarazo , Proteínas Gestacionales/química , Proteínas Gestacionales/metabolismo
20.
Int Immunopharmacol ; 17(4): 1075-83, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24177275

RESUMEN

Rheumatoid arthritis (RA) is a chronic T-cell mediated autoimmune disease that affects primarily the joints. The induction of immune tolerance through antigen-specific therapies for the blockade of pathogenic CD4+ T cells constitutes a current focus of research. In this focus it is attempted to simultaneously activate multiple regulatory mechanisms, such as: apoptosis and regulatory T cells (Tregs). APL-1 is an altered peptide ligand derived from a novel CD4+ T-cell epitope of human heat-shock protein of 60kDa, an autoantigen involved in the pathogenesis of RA. Previously, we have reported that APL-1 induces CD4+ CD25(high)Foxp3+ Tregs in several systems. Here, we investigated the ability of APL-1 in inducing apoptosis in PBMCs from RA patients, who were classified as active or inactive according to their DAS28 score. APL-1 decreased the viability of PBMCs from active but not from inactive patients. DNA fragmentation assays and typical morphological features clearly demonstrated that APL-1 induced apoptosis in these cells. Activated CD4+ CD25+ T cells but not resting CD4+ CD25- T cells were identified as targets of APL-1. Furthermore, CD4+ T-cell responses to APL-1 were found to be dependent on antigen presentation via the HLA-DR molecule. Thus, APL-1 is a regulatory CD4+ T cell epitope which might modulate inflammatory immune responses in PBMCs from RA patients by inducing CD4+ CD25(high)Foxp3+ Tregs and apoptosis in activated CD4+ T cells. These results support further investigation of this candidate drug for the treatment of RA.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Reumatoide/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Chaperonina 60/farmacología , Fragmentos de Péptidos/farmacología , Péptidos/farmacología , Adulto , Anciano , Apoptosis/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Chaperonina 60/inmunología , Fragmentación del ADN/efectos de los fármacos , Femenino , Humanos , Subunidad alfa del Receptor de Interleucina-2/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/ultraestructura , Ligandos , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/inmunología , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...