Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Commun ; 15(1): 661, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253617

RESUMEN

Understanding the nature and extent of non-canonical human leukocyte antigen (HLA) presentation in tumour cells is a priority for target antigen discovery for the development of next generation immunotherapies in cancer. We here employ a de novo mass spectrometric sequencing approach with a refined, MHC-centric analysis strategy to detect non-canonical MHC-associated peptides specific to cancer without any prior knowledge of the target sequence from genomic or RNA sequencing data. Our strategy integrates MHC binding rank, Average local confidence scores, and peptide Retention time prediction for improved de novo candidate Selection; culminating in the machine learning model MARS. We benchmark our model on a large synthetic peptide library dataset and reanalysis of a published dataset of high-quality non-canonical MHC-associated peptide identifications in human cancer. We achieve almost 2-fold improvement for high quality spectral assignments in comparison to de novo sequencing alone with an estimated accuracy of above 85.7% when integrated with a stepwise peptide sequence mapping strategy. Finally, we utilize MARS to detect and validate lncRNA-derived peptides in human cervical tumour resections, demonstrating its suitability to discover novel, immunogenic, non-canonical peptide sequences in primary tumour tissue.


Asunto(s)
Péptidos , Neoplasias del Cuello Uterino , Humanos , Femenino , Péptidos/genética , Neoplasias del Cuello Uterino/genética , Secuencia de Aminoácidos , Biblioteca de Péptidos , Benchmarking
2.
Mol Cell Proteomics ; 22(4): 100519, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828127

RESUMEN

Posttranslational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA class-I molecules in cancer. Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate. Furthermore, the role of the HLA class-II pathway in PTSP presentation has been studied only in diabetes. Here, we exploit our large-scale cancer peptidomics database and our newly devised pipeline for filtering spliced peptide predictions to identify recurring spliced peptides, both for HLA class-I and class-II complexes. Our results indicate that HLA class-I-spliced peptides account for a low percentage of the immunopeptidome (less than 3.1%) yet are larger in number relative to other types of identified aberrant peptides. Therefore, spliced peptides significantly contribute to the repertoire of presented peptides in cancer cells. In addition, we identified HLA class-II-bound spliced peptides, but to a lower extent (less than 0.5%). The identified spliced peptides include cancer- and immune-associated genes, such as the MITF oncogene, DAPK1 tumor suppressor, and HLA-E, which were validated using synthetic peptides. The potential immunogenicity of the DAPK1- and HLA-E-derived PTSPs was also confirmed. In addition, a reanalysis of our published mouse single-cell clone immunopeptidome dataset showed that most of the spliced peptides were found repeatedly in a large number of the single-cell clones. Establishing a novel search-scheme for the discovery and evaluation of recurring PTSPs among cancer patients may assist in identifying potential novel targets for immunotherapy.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Animales , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/genética , Empalme del ARN , Péptidos/metabolismo
3.
J Virol ; 96(10): e0043222, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35475667

RESUMEN

There is increasing evidence for the importance of human leukocyte antigen C (HLA-C)-restricted CD8+ T cells in HIV-1 control, but these responses are relatively poorly investigated. The number of HLA-C-restricted HIV-1 epitopes identified is much smaller than those of HLA-A-restricted or HLA-B-restricted ones. Here, we utilized a mass spectrometry-based approach to identify HIV-1 peptides presented by HLA-C*14:03 protective and HLA-C*14:02 nonprotective alleles. We identified 25 8- to 11-mer HLA-I-bound HIV-1 peptides from HIV-1-infected HLA-C*14:02+/14:03+ cells. Analysis of T cell responses to these peptides identified novel 6 T cell epitopes targeted in HIV-1-infected HLA-C*14:02+/14:03+ subjects. Analyses using HLA stabilization assays demonstrated that all 6 epitope peptides exhibited higher binding to and greater cell surface stabilization of HLA-C*14:02 than HLA-C*14:03. T cell response magnitudes were typically higher in HLA-C*14:02+ than HLA-C*14:03+ individuals, with responses to the Pol KM9 and Nef epitopes being significantly higher. The results show that HLA-C*14:02 can elicit stronger T cell responses to HIV-1 than HLA-C*14:03 and suggest that the single amino acid difference between these HLA-C14 subtypes at position 21, outside the peptide-binding groove, indirectly influences the stability of peptide-HLA-C*14 complexes and induction/expansion of HIV-specific T cells. Taken together with a previous finding that KIR2DL2+ NK cells recognized HLA-C*14:03+ HIV-1-infected cells more than HLA-C*14:02+ ones, the present study indicates that these HLA-C*14 subtypes differentially impact HIV-1 control by T cells and NK cells. IMPORTANCE Some human leukocyte antigen (HLA) class I alleles are associated with good clinical outcomes in HIV-1 infection and are called protective HLA alleles. Identification of T cell epitopes restricted by protective HLA alleles can give important insight into virus-immune system interactions and inform design of immune-based prophylactic/therapeutic strategies. Although epitopes restricted by many protective HLA-A/B alleles have been identified, protective HLA-C alleles are relatively understudied. Here, we identified 6 novel T cell epitopes presented by both HLA-C*14:02 (no association with protection) and HLA-C*14:03 (protective) using a mass spectrometry-based immunopeptidome profiling approach. We found that these peptides bound to and stabilized HLA-C*14:02 better than HLA-C*14:03 and observed differences in induction/expansion of epitope-specific T cell responses in HIV-infected HLA-C*14:02+ versus HLA-C*14:03+ individuals. These results enhance understanding of how the microstructural difference at position 21 between these HLA-C*14 subtypes may influence cellular immune responses involved in viral control in HIV-1 infection.


Asunto(s)
Linfocitos T CD8-positivos , Infecciones por VIH , Seropositividad para VIH , Antígenos HLA-C , Alelos , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T , Infecciones por VIH/inmunología , VIH-1 , Antígenos HLA-C/genética , Humanos , Péptidos/metabolismo
4.
Front Immunol ; 13: 1067463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605212

RESUMEN

Human leukocyte antigen (HLA) genes are the most polymorphic loci in the human genome and code for proteins that play a key role in guiding adaptive immune responses by presenting foreign and self peptides (ligands) to T cells. Each person carries up to 6 HLA class I variants (maternal and paternal copies of HLA-A, HLA-B and HLA-C genes) and also multiple HLA class II variants, which cumulatively define the landscape of peptides presented to T cells. Each HLA variant has its own repertoire of presented peptides with a certain sequence motif which is mainly defined by peptide anchor residues (typically the second and the last positions for HLA class I ligands) forming key interactions with the peptide-binding groove of HLA. In this study, we aimed to characterize HLA binding preferences in terms of molecular functions of presented proteins. To focus on the ligand presentation bias introduced specifically by HLA-peptide interaction we performed large-scale in silico predictions of binding of all peptides from human proteome for a wide range of HLA variants and established which functions are characteristic for proteins that are more or less preferentially presented by different HLA variants using statistical calculations and gene ontology (GO) analysis. We demonstrated marked distinctions between HLA variants in molecular functions of preferentially presented proteins (e.g. some HLA variants preferentially present membrane and receptor proteins, while others - ribosomal and DNA-binding proteins) and reduced presentation of extracellular matrix and collagen proteins by the majority of HLA variants. To explain these observations we demonstrated that HLA preferentially presents proteins enriched in amino acids which are required as anchor residues for the particular HLA variant. Our observations can be extrapolated to explain the protective effect of certain HLA alleles in infectious diseases, and we hypothesize that they can also explain susceptibility to certain autoimmune diseases and cancers. We demonstrate that these differences lead to differential presentation of HIV, influenza virus, SARS-CoV-1 and SARS-CoV-2 proteins by various HLA alleles. Taking into consideration that HLA alleles are inherited in haplotypes, we hypothesized that haplotypes composed of a combination of HLA variants with different presentation preferences should be more advantageous as they allow presenting a larger repertoire of peptides and avoiding holes in immunopeptidome. Indeed, we demonstrated that HLA-A/HLA-B and HLA-A/HLA-C haplotypes which have a high frequency in the human population are comprised of HLA variants that are more distinct in terms of functions of preferentially presented proteins than the control pairs.


Asunto(s)
Antígenos HLA-A , Antígenos HLA-B , Antígenos HLA-C , Haplotipos , Humanos , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Péptidos
5.
Front Immunol ; 12: 755002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630434

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2020.563800.].

6.
bioRxiv ; 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33619495

RESUMEN

Human leukocyte antigen (HLA) is highly polymorphic and plays a key role in guiding adaptive immune responses by presenting foreign and self peptides to T cells. Each HLA variant selects a minor fraction of peptides that match a certain motif required for optimal interaction with the peptide-binding groove. These restriction rules define the landscape of peptides presented to T cells. Given these limitations, one might suggest that the choice of peptides presented by HLA is non-random and there is preferential presentation of an array of peptides that is optimal for distinguishing self and foreign proteins. In this study we explore these preferences with a comparative analysis of self peptides enriched and depleted in HLA ligands. We show that HLAs exhibit preferences towards presenting peptides from certain proteins while disfavoring others with specific functions, and highlight differences between various HLA genes and alleles in those preferences. We link those differences to HLA anchor residue propensities and amino acid composition of preferentially presented proteins. The set of proteins that peptides presented by a given HLA are most likely to be derived from can be used to distinguish between class I and class II HLAs and HLA alleles. Our observations can be extrapolated to explain the protective effect of certain HLA alleles in infectious diseases, and we hypothesize that they can also explain susceptibility to certain autoimmune diseases and cancers. We demonstrate that these differences lead to differential presentation of HIV, influenza virus, SARS-CoV-1 and SARS-CoV-2 proteins by various HLA alleles. Finally, we show that the reported self peptidome preferences of distinct HLA variants can be compensated by combinations of HLA-A/HLA-B and HLA-A/HLA-C alleles in frequent haplotypes.

7.
Front Immunol ; 11: 563800, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072102

RESUMEN

Proteasomes catalyze the degradation of endogenous proteins into oligopeptides, but can concurrently create spliced oligopeptides through ligation of previously non-contiguous peptide fragments. Recent studies have uncovered a formerly unappreciated role for proteasome-catalyzed peptide splicing (PCPS) in the generation of non-genomically templated human leukocyte antigen class I (HLA-I)-bound cis-spliced peptides that can be targeted by CD8+ T cells in cancer and infection. However, the mechanisms defining PCPS reactions are poorly understood. Here, we experimentally define the biochemical constraints of proteasome-catalyzed cis-splicing reactions by examination of in vitro proteasomal digests of a panel of viral- and self-derived polypeptide substrates using a tailored mass-spectrometry-based de novo sequencing workflow. We show that forward and reverse PCPS reactions display unique splicing signatures, defined by preferential fusion of distinct amino acid residues with stringent peptide length distributions, suggesting sequence- and size-dependent accessibility of splice reactants for proteasomal substrate binding pockets. Our data provide the basis for a more informed mechanistic understanding of PCPS that will facilitate future prediction of spliced peptides from protein sequences.


Asunto(s)
VIH-1/química , Péptidos/química , Complejo de la Endopetidasa Proteasomal/química , Empalme de Proteína , Proteínas Virales/química , Secuencia de Aminoácidos , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Catálisis , Dominio Catalítico , Técnicas de Química Sintética , Cromatografía Liquida , Simulación por Computador , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Fragmentos de Péptidos/química , Proteolisis , Espectrometría de Masas en Tándem
8.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32887977

RESUMEN

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Asunto(s)
Antígenos Virales/inmunología , Betacoronavirus/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito T/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/patología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Reino Unido , Vacunas Virales/inmunología
9.
Commun Biol ; 3(1): 376, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32665623

RESUMEN

Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.


Asunto(s)
VIH-1/fisiología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microambiente Celular , Citometría de Flujo , Humanos , Hipoxia/metabolismo , Hipoxia/virología , Tejido Linfoide/metabolismo , Tejido Linfoide/virología , Oxígeno , Regiones Promotoras Genéticas , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcripción Viral/fisiología , Activación Viral
10.
bioRxiv ; 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32577665

RESUMEN

COVID-19 is an ongoing global crisis in which the development of effective vaccines and therapeutics will depend critically on understanding the natural immunity to the virus, including the role of SARS-CoV-2-specific T cells. We have conducted a study of 42 patients following recovery from COVID-19, including 28 mild and 14 severe cases, comparing their T cell responses to those of 16 control donors. We assessed the immune memory of T cell responses using IFNγ based assays with overlapping peptides spanning SARS-CoV-2 apart from ORF1. We found the breadth, magnitude and frequency of memory T cell responses from COVID-19 were significantly higher in severe compared to mild COVID-19 cases, and this effect was most marked in response to spike, membrane, and ORF3a proteins. Total and spike-specific T cell responses correlated with the anti-Spike, anti-Receptor Binding Domain (RBD) as well as anti-Nucleoprotein (NP) endpoint antibody titre (p<0.001, <0.001 and =0.002). We identified 39 separate peptides containing CD4 + and/or CD8 + epitopes, which strikingly included six immunodominant epitope clusters targeted by T cells in many donors, including 3 clusters in spike (recognised by 29%, 24%, 18% donors), two in the membrane protein (M, 32%, 47%) and one in the nucleoprotein (Np, 35%). CD8+ responses were further defined for their HLA restriction, including B*4001-restricted T cells showing central memory and effector memory phenotype. In mild cases, higher frequencies of multi-cytokine producing M- and NP-specific CD8 + T cells than spike-specific CD8 + T cells were observed. They furthermore showed a higher ratio of SARS-CoV-2-specific CD8 + to CD4 + T cell responses. Immunodominant epitope clusters and peptides containing T cell epitopes identified in this study will provide critical tools to study the role of virus-specific T cells in control and resolution of SARS-CoV-2 infections. The identification of T cell specificity and functionality associated with milder disease, highlights the potential importance of including non-spike proteins within future COVID-19 vaccine design.

11.
Proc Natl Acad Sci U S A ; 116(49): 24748-24759, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31748275

RESUMEN

Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reactividad Cruzada/genética , Infecciones por VIH/inmunología , VIH-1/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/uso terapéutico , Antígenos Virales/genética , Antígenos Virales/inmunología , Antígenos Virales/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Estudios de Cohortes , Reacciones Cruzadas/inmunología , Conjuntos de Datos como Asunto , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Infecciones por VIH/sangre , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Evasión Inmune , Péptidos/genética , Péptidos/inmunología , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/inmunología , Empalme del ARN/inmunología , ARN Viral/sangre , ARN Viral/genética , ARN Viral/aislamiento & purificación , RNA-Seq , Proteínas Virales/genética , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
12.
J Virol ; 93(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31217245

RESUMEN

Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Antígenos HLA-C/metabolismo , Epítopos Inmunodominantes/inmunología , Proteómica/métodos , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Cromatografía Liquida , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/aislamiento & purificación , Infecciones por VIH/virología , VIH-1/química , Humanos , Epítopos Inmunodominantes/aislamiento & purificación , Ratones , Espectrometría de Masas en Tándem
13.
PLoS One ; 13(6): e0198662, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29912892

RESUMEN

Chlamydia trachomatis (Ct) is the most common sexually transmitted bacterial pathogen, and the leading cause of infectious blindness worldwide. We have recently shown that immunization with the highly conserved antigenic passenger domain of recombinant Ct polymorphic membrane protein D (rPmpD) is protective in the mouse model of Ct genital tract infection, and previously, that ocular anti-rPmpD antibodies are elicited following vaccination. However, the mechanisms governing the assembly and structure-function relationship of PmpD are unknown. Here, we provide a biophysical analysis of this immunogenic 65 kDa passenger domain fragment of PmpD. Using differential cysteine labeling coupled with LC-MS/MS analysis, we show that widespread intra- and intermolecular disulphide interactions play important roles in the preservation of native monomeric secondary structure and the formation of higher-order oligomers. While it has been proposed that FxxN and GGA(I, L,V) repeat motifs in the Pmp21 ortholog in Chlamydia pneumoniae mediate self-interaction, no such role has previously been identified for cysteine residues in chlamydial Pmps. Further characterisation reveals that oligomeric proteoforms and rPmpD monomers adopt ß-sheet folds, consistent with previously described Gram-negative bacterial type V secretion systems (T5SSs). We also highlight adhesin-like properties of rPmpD, showing that both soluble rPmpD and anti-rPmpD serum from immunized mice abrogate binding of rPmpD-coated beads to mammalian cells in a dose-dependent fashion. Hence, our study provides further evidence that chlamydial Pmps may function as adhesins, while elucidating yet another important mechanism of self-association of bacterial T5SS virulence factors that may be unique to the Chlamydiaceae.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/metabolismo , Proteínas de la Membrana/metabolismo , Adhesinas Bacterianas/aislamiento & purificación , Animales , Proteínas Bacterianas/aislamiento & purificación , Vacunas Bacterianas/uso terapéutico , Infecciones por Chlamydia/prevención & control , Dicroismo Circular , Disulfuros/metabolismo , Electroforesis en Gel de Poliacrilamida , Femenino , Cromatografía de Gases y Espectrometría de Masas , Proteínas de la Membrana/aislamiento & purificación , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes
14.
Vaccine ; 34(35): 4123-4131, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27389169

RESUMEN

The development of a chlamydial vaccine that elicits protective mucosal immunity is of paramount importance in combatting the global spread of sexually transmitted Chlamydia trachomatis (Ct) infections. While the identification and prioritization of chlamydial antigens is a crucial prerequisite for efficacious vaccine design, it is likely that novel adjuvant development and selection will also play a pivotal role in the translational potential of preclinical Ct vaccines. Although the molecular nature of the immuno-modulatory component is of primary importance, adjuvant formulation and delivery systems may also govern vaccine efficacy and potency. Our study provides the first preclinical evaluation of recombinant Ct polymorphic membrane protein D (rPmpD) in combination with three different formulations of a novel second-generation lipid adjuvant (SLA). SLA was rationally designed in silico by modification of glucopyranosyl lipid adjuvant (GLA), a TLR4 agonistic precursor molecule currently in Phase II clinical development. We demonstrate robust protection against intra-vaginal Ct challenge in mice, evidenced by significantly enhanced resistance to infection and reduction in mean bacterial load. Strikingly, protection was found to correlate with the presence of robust anti-rPmpD serum and cervico-vaginal IgG titres, even in the absence of adjuvant-induced Th1-type cellular immune responses elicited by each SLA formulation, and we further show that anti-rPmpD antibodies recognize Ct EBs. These findings highlight the utility of SLA and rational molecular design of adjuvants in preclinical Ct vaccine development, but also suggest an important role for anti-rPmpD antibodies in protection against urogenital Ct infection.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Chlamydia/prevención & control , Inmunidad Mucosa , Proteínas de la Membrana/inmunología , Animales , Anticuerpos Antibacterianos/análisis , Chlamydia trachomatis , Femenino , Inmunidad Humoral , Inmunoglobulina G/análisis , Lípidos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/inmunología , Vagina/microbiología
15.
PLoS One ; 10(10): e0141209, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26501198

RESUMEN

BACKGROUND: Ocular infection with Chlamydia trachomatis can cause trachoma, which is the leading cause of blindness due to infection worldwide. Despite the large-scale implementation of trachoma control programmes in the majority of countries where trachoma is endemic, there remains a need for a vaccine. Since C. trachomatis infects the conjunctival epithelium and stimulates an immune response in the associated lymphoid tissue, vaccine regimens that enhance local antibody responses could be advantageous. In experimental infections of non-human primates (NHPs), antibody specificity to C. trachomatis antigens was found to change over the course of ocular infection. The appearance of major outer membrane protein (MOMP) specific antibodies correlated with a reduction in ocular chlamydial burden, while subsequent generation of antibodies specific for PmpD and Pgp3 correlated with C. trachomatis eradication. METHODS: We used a range of heterologous prime-boost vaccinations with DNA, Adenovirus, modified vaccinia Ankara (MVA) and protein vaccines based on the major outer membrane protein (MOMP) as an antigen, and investigated the effect of vaccine route, antigen and regimen on the induction of anti-chlamydial antibodies detectable in the ocular lavage fluid of mice. RESULTS: Three intramuscular vaccinations with recombinant protein adjuvanted with MF59 induced significantly greater levels of anti-MOMP ocular antibodies than the other regimens tested. Intranasal delivery of vaccines induced less IgG antibody in the eye than intramuscular delivery. The inclusion of the antigens PmpD and Pgp3, singly or in combination, induced ocular antigen-specific IgG antibodies, although the anti-PmpD antibody response was consistently lower and attenuated by combination with other antigens. CONCLUSIONS: If translatable to NHPs and/or humans, this investigation of the murine C. trachomatis specific ocular antibody response following vaccination provides a potential mouse model for the rapid and high throughput evaluation of future trachoma vaccines.


Asunto(s)
Chlamydia trachomatis/inmunología , Chlamydia trachomatis/patogenicidad , Tracoma/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Infecciones por Chlamydia/inmunología , Infecciones por Chlamydia/prevención & control , Ensayo de Inmunoadsorción Enzimática , Femenino , Ratones , Ratones Endogámicos BALB C , Tracoma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...