Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Biol ; 22(5): e3002626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728373

RESUMEN

All plant viruses were thought to encode in its genome a movement protein that acts as a "passport," allowing active movement within the host. A new study in PLOS Biology characterizes the first plant virus that can colonize its host without encoding this protein.


Asunto(s)
Enfermedades de las Plantas , Virus de Plantas , Virus de Plantas/fisiología , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Enfermedades de las Plantas/virología , Plantas/virología , Proteínas de Movimiento Viral en Plantas/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Genoma Viral , Interacciones Huésped-Patógeno
2.
New Phytol ; 241(2): 845-860, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37920100

RESUMEN

Specificity in plant-pathogen gene-for-gene (GFG) interactions is determined by the recognition of pathogen proteins by the products of plant resistance (R) genes. The evolutionary dynamics of R genes in plant-virus systems is poorly understood. We analyse the evolution of the L resistance locus to tobamoviruses in the wild pepper Capsicum annuum var. glabriusculum (chiltepin), a crop relative undergoing incipient domestication. The frequency, and the genetic and phenotypic diversity, of the L locus was analysed in 41 chiltepin populations under different levels of human management over its distribution range in Mexico. The frequency of resistance was lower in Cultivated than in Wild populations. L-locus genetic diversity showed a strong spatial structure with no isolation-by-distance pattern, suggesting environment-specific selection, possibly associated with infection by the highly virulent tobamoviruses found in the surveyed regions. L alleles differed in recognition specificity and in the expression of resistance at different temperatures, broad-spectrum recognition of P0 + P1 pathotypes and expression above 32°C being ancestral traits that were repeatedly lost along L-locus evolution. Overall, loss of resistance co-occurs with incipient domestication and broad-spectrum resistance expressed at high temperatures has apparent fitness costs. These findings contribute to understand the role of fitness trade-offs in plant-virus coevolution.


Asunto(s)
Capsicum , Resistencia a la Enfermedad , Humanos , Resistencia a la Enfermedad/genética , Temperatura , Alelos , México , Capsicum/genética , Enfermedades de las Plantas/genética
4.
Phytopathology ; 113(9): 1773-1787, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36880795

RESUMEN

Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Arabidopsis , Virus de Plantas , Enfermedades de las Plantas , Semillas , Plantas
5.
New Phytol ; 237(4): 1071-1073, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478567
6.
Viruses ; 14(12)2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36560793

RESUMEN

Effector-triggered immunity (ETI) is one of the most studied mechanisms of plant resistance to viruses. During ETI, viral proteins are recognized by specific plant R proteins, which most often trigger a hypersensitive response (HR) involving programmed cell death (PCD) and a restriction of infection in the initially infected sites. However, in some plant-virus interactions, ETI leads to a response in which PCD and virus multiplication are not restricted to the entry sites and spread throughout the plant, leading to systemic necrosis. The host and virus genetic determinants, and the consequences of this response in plant-virus coevolution, are still poorly understood. Here, we identified an allelic version of RCY1-an R protein-as the host genetic determinant of broad-spectrum systemic necrosis induced by cucumber mosaic virus (CMV) infection in the Arabidopsis thaliana Co-1 ecotype. Systemic necrosis reduced virus fitness by shortening the infectious period and limiting virus multiplication; thus, this phenotype could be adaptive for the plant population as a defense against CMV. However, the low frequency (less than 1%) of this phenotype in A. thaliana wild populations argues against this hypothesis. These results expand current knowledge on the resistance mechanisms to virus infections associated with ETI in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cucumovirus , Infecciones por Citomegalovirus , Humanos , Arabidopsis/genética , Cucumovirus/genética , Cucumovirus/metabolismo , Proteínas de Arabidopsis/metabolismo , Necrosis , Enfermedades de las Plantas/genética
7.
Plants (Basel) ; 11(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501256

RESUMEN

Cucumber mosaic virus (CMV), which has great impact on agronomic production worldwide, is both aphid and seed transmitted. Although the mechanisms of aphid transmission have been widely studied, those underlying the ability of CMV to survive and remain infectious during the passage from one generation to the next through the seeds are still to be clarified. Moreover, the viral determinants of seed transmission rate are poorly understood. Three viral genotypes produced from same RNA 1 and 2 components of CMV-Fny but differing in RNA 3 (the wild type CMV-Fny, a pseudorecombinant CMV-Fny/CMV-S and a chimeric CMV previously obtained by our group, named F, FS and CS, respectively) were propagated in Nicotiana tabacum cv Xanthi plants in order to assess differences in tobacco seed transmission rate and persistence through plant generations in the absence of aphid transmission. Seed-growth tests revealed CMV infection in the embryos, but not in the integuments. Seedlings from seed-growth tests showed the presence of all considered viruses but at different rates: from 4% (F, FS) to 16% (CS). Electron microscopy revealed absence (CS) of viral particles or virions without the typical central hole (F and FS). In agreement, structural characteristics of purified CMV particles, assessed by circular dichroism spectroscopy, showed anomalous spectra of nucleic acids rather than the expected nucleoproteins. These alterations resulted in no seed transmission beyond the first plant generation. Altogether, the results show for the first time that correct virion assembly is needed for seed infection from the mother plant but not to seedling invasion from the seed. We propose that incorrect virion formation, self-assembly and architecture stability might be explained if during the first stages of germination and seedling development some tobacco seed factors target viral regions responsible for protein-RNA interactions.

8.
PLoS Pathog ; 18(8): e1010707, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951532
9.
Microorganisms ; 10(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35208820

RESUMEN

In RNA viruses, which have high mutation-and fast evolutionary- rates, gene overlapping (i.e., genomic regions that encode more than one protein) is a major factor controlling mutational load and therefore the virus evolvability. Although DNA viruses use host high-fidelity polymerases for their replication, and therefore should have lower mutation rates, it has been shown that some of them have evolutionary rates comparable to those of RNA viruses. Notably, these viruses have large proportions of their genes with at least one overlapping instance. Hence, gene overlapping could be a modulator of virus evolution beyond the RNA world. To test this hypothesis, we use the genus Begomovirus of plant viruses as a model. Through comparative genomic approaches, we show that terminal gene overlapping decreases the rate of virus evolution, which is associated with lower frequency of both synonymous and nonsynonymous mutations. In contrast, terminal overlapping has little effect on the pace of virus evolution. Overall, our analyses support a role for gene overlapping in the evolution of begomoviruses and provide novel information on the factors that shape their genetic diversity.

10.
Mol Plant Pathol ; 23(2): 175-187, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34672409

RESUMEN

The genetic basis of plant tolerance to parasites is poorly understood. We have previously shown that tolerance of Arabidopsis thaliana to its pathogen cucumber mosaic virus is achieved through changes in host life-history traits on infection that result in delaying flowering and reallocating resources from vegetative growth to reproduction. In this system we analyse here genetic determinants of tolerance using a recombinant inbred line family derived from a cross of two accessions with extreme phenotypes. Three major quantitative trait loci for tolerance were identified, which co-located with three flowering repressor genes, FLC, FRI, and HUA2. The role of these genes in tolerance was further examined in genotypes carrying functional or nonfunctional alleles. Functional alleles of FLC together with FRI and/or HUA2 were required for both tolerance and resource reallocation from growth to reproduction. Analyses of FLC alleles from wild accessions that differentially modulate flowering time showed that they ranked differently for their effects on tolerance and flowering. These results pinpoint a role of FLC in A. thaliana tolerance to cucmber mosaic virus, which is a novel major finding, as FLC has not been recognized previously to be involved in plant defence. Although tolerance is associated with a delay in flowering that allows resource reallocation, our results indicate that FLC regulates tolerance and flowering initiation by different mechanisms. Thus, we open a new avenue of research on the interplay between defence and development in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cucumovirus , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cucumovirus/genética , Cucumovirus/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Dominio MADS/metabolismo , Reproducción
11.
BMC Ecol Evol ; 21(1): 173, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503449

RESUMEN

BACKGROUND: Plant communities of fragmented agricultural landscapes, are subject to patch isolation and scale-dependent effects. Variation in configuration, composition, and distance from one another affect biological processes of disturbance, productivity, and the movement ecology of species. However, connectivity and spatial structuring among these diverse communities are rarely considered together in the investigation of biological processes. Spatially optimised predictor variables that are based on informed measures of connectivity among communities, offer a solution to untangling multiple processes that drive biodiversity. RESULTS: To address the gap between theory and practice, a novel spatial optimisation method that incorporates hypotheses of community connectivity, was used to estimate the scale of effect of biotic and abiotic factors that distinguish plant communities. We tested: (1) whether different hypotheses of connectivity among sites was important to measuring diversity and environmental variation among plant communities; and (2) whether spatially optimised variables of species relative abundance and the abiotic environment among communities were consistent with diversity parameters in distinguishing four habitat types; namely Crop, Edge, Oak, and Wasteland. The global estimates of spatial autocorrelation, which did not consider environmental variation among sites, indicated significant positive autocorrelation under four hypotheses of landscape connectivity. The spatially optimised approach indicated significant positive and negative autocorrelation of species relative abundance at fine and broad scales, which depended on the measure of connectivity and environmental variation among sites. CONCLUSIONS: These findings showed that variation in community diversity parameters does not necessarily correspond to underlying spatial structuring of species relative abundance. The technique used to generate spatially-optimised predictors is extendible to incorporate multiple variables of interest along with a priori hypotheses of landscape connectivity. Spatially-optimised variables with appropriate definitions of connectivity might be better than diversity parameters in explaining functional differences among communities.


Asunto(s)
Biodiversidad , Ecosistema , Agricultura , Plantas
12.
New Phytol ; 231(4): 1570-1585, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33997993

RESUMEN

Heterogeneity for plant defences determines both the capacity of host populations to buffer the effect of infection and the pathogen´s fitness. However, little information is known on how host population structure for tolerance, a major plant defence, impacts the evolution of plant-pathogen interactions. By performing 10 serial passages of Turnip mosaic virus (TuMV) in Arabidopsis thaliana populations with varying proportion of tolerant genotypes simulating different structures for this trait, we analysed how host heterogeneity for this defence shapes the evolution of both virus multiplication, the effect of infection on plant fecundity and mortality, and plant tolerance and resistance. Results indicated that a higher proportion of tolerant genotypes in the host population promotes virus multiplication and reduces the effect of infection on plant mortality, but not on plant fecundity. These changes resulted in more effective plant tolerance to virus infection. Conversely, a lower proportion of tolerant genotypes reduced virus multiplication, boosting plant resistance. Our work for the first time provides evidence of the main role of host population structure for tolerance on pathogen evolution and on the subsequent feedback loops on plant defences.


Asunto(s)
Arabidopsis , Cucumovirus , Potyvirus , Arabidopsis/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Replicación Viral
13.
Microorganisms ; 9(4)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801693

RESUMEN

Virulence, the effect of pathogen infection on progeny production, is a major determinant of host and pathogen fitness as it affects host fecundity and pathogen transmission. In plant-virus interactions, ample evidence indicates that virulence is genetically controlled by both partners. However, the host genetic determinants are poorly understood. Through a genome-wide association study (GWAS) of 154 Arabidopsis thaliana genotypes infected by Cucumber mosaic virus (CMV), we identified eight host genes associated with virulence, most of them involved in response to biotic stresses and in cell wall biogenesis in plant reproductive structures. Given that virulence is a main determinant of the efficiency of plant virus seed transmission, we explored the link between this trait and the genetic regulation of virulence. Our results suggest that the same functions that control virulence are also important for CMV transmission through seeds. In sum, this work provides evidence of a novel role for some previously known plant defense genes and for the cell wall metabolism in plant virus interactions.

14.
Annu Rev Phytopathol ; 58: 77-96, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32403981

RESUMEN

Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host-pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.


Asunto(s)
Interacciones Huésped-Patógeno , Plantas , Ecología
15.
Virus Evol ; 6(1): veaa019, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32211198

RESUMEN

Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified the associated mechanisms. To do so, we challenged eighteen Arabidopsis thaliana genotypes with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). We characterized plant life-history trait modifications associated with reduced effects of TuMV and CMV on plant seed production (fecundity tolerance) and life period (mortality tolerance), both measured as a norm of reaction across viral loads (range tolerance). Also, we analysed resistance-tolerance and tolerance-tolerance trade-offs. Results indicate that tolerance to TuMV is associated with changes in the length of the pre-reproductive and reproductive periods, and tolerance to CMV with resource reallocation from growth to reproduction; and that tolerance to TuMV is traded-off against tolerance to CMV in a virulence-dependent manner. Thus, this work provides novel insights on the mechanisms of plant tolerance and highlights the importance of considering the combined effect of different pathogens to understand how plant defences evolve.

16.
Phytopathology ; 110(1): 94-105, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31589103

RESUMEN

Increasing evidence indicates that in wild ecosystems plant viruses are important ecological agents, and with potential to jump into crops, but only recently have the diversity and population dynamics of wild plant viruses begun to be explored. Theory proposes that biotic factors (e.g., ecosystem biodiversity, host abundance, and host density) and climatic conditions would determine the epidemiology and evolution of wild plant viruses. However, these predictions seldom have been empirically tested. For 3 years, we analyzed the prevalence and genetic diversity of Potyvirus species in preserved riparian forests of Spain. Results indicated that potyviruses were always present in riparian forests, with a novel generalist potyvirus species provisionally named Iberian hop mosaic virus (IbHMV), explaining the largest fraction of infected plants. Focusing on this potyvirus, we analyzed the biotic and climatic factors affecting virus infection risk and population genetic diversity in its native ecosystem. The main predictors of IbHMV infection risk were host relative abundance and species richness. Virus prevalence and host relative abundance were the major factors determining the genetic diversity and selection pressures in the virus population. These observations support theoretical predictions assigning these ecological factors a key role in parasite epidemiology and evolution. Finally, our phylogenetic analysis indicated that the viral population was genetically structured according to host and location of origin, as expected if speciation is largely sympatric. Thus, this work contributes to characterizing viral diversity and provides novel information on the determinants of plant virus epidemiology and evolution in wild ecosystems.


Asunto(s)
Ecosistema , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Virus de Plantas , Plantas , Potyvirus , Especificidad del Huésped , Interacciones Huésped-Patógeno/fisiología , Filogenia , Enfermedades de las Plantas/virología , Virus de Plantas/clasificación , Virus de Plantas/fisiología , Plantas/virología , Densidad de Población , Potyvirus/clasificación , Potyvirus/genética , España
17.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511374

RESUMEN

Although vertical transmission from parents to offspring through seeds is an important fitness component of many plant viruses, very little is known about the factors affecting this process. Viruses reach the seed by direct invasion of the embryo and/or by infection of the ovules or the pollen. Thus, it can be expected that the efficiency of seed transmission would be determined by (i) virus within-host multiplication and movement, (ii) the ability of the virus to invade gametic tissues, (iii) plant seed production upon infection, and (iv) seed survival in the presence of the virus. However, these predictions have seldom been experimentally tested. To address this question, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus and Cucumber mosaic virus Using these plant-virus interactions, we analyzed the relationship between the effect of virus infection on rosette and inflorescence weights; short-, medium-, and long-term seed survival; virulence; the number of seeds produced per plant; virus within-host speed of movement; virus accumulation in the rosette and inflorescence; and efficiency of seed transmission measured as a percentage and as the total number of infected seeds. Our results indicate that the best estimators of percent seed transmission are the within-host speed of movement and multiplication in the inflorescence. Together with these two infection traits, virulence and the number of seeds produced per infected plant were also associated with the number of infected seeds. Our results provide support for theoretical predictions and contribute to an understanding of the determinants of a process central to plant-virus interactions.IMPORTANCE One of the major factors contributing to plant virus long-distance dispersal is the global trade of seeds. This is because more than 25% of plant viruses can infect seeds, which are the main mode of germplasm exchange/storage, and start new epidemics in areas where they were not previously present. Despite the relevance of this process for virus epidemiology and disease emergence, the infection traits associated with the efficiency of virus seed transmission are largely unknown. Using turnip mosaic and cucumber mosaic viruses and their natural host Arabidopsis thaliana as model systems, we have identified the within-host speed of virus colonization and multiplication in the reproductive structures as the main determinants of the efficiency of seed transmission. These results contribute to shedding light on the mechanisms by which plant viruses disperse and optimize their fitness and may help in the design of more-efficient strategies to prevent seed infection.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Enfermedades de las Plantas/virología , Virus de Plantas/crecimiento & desarrollo , Arabidopsis/virología , Cucumovirus/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Modelos Biológicos , Fenotipo , Potyvirus/patogenicidad , Semillas/virología , Virulencia
18.
Plants (Basel) ; 8(9)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461899

RESUMEN

Increased light intensity has been predicted as a major consequence of climate change. Light intensity is a critical resource involved in many plant processes, including the interaction with viruses. A central question to plant-virus interactions is understanding the determinants of virus dispersal among plants. However, very little is known on the effect of environmental factors on virus transmission, particularly through seeds. The fitness of seed-transmitted viruses is highly dependent on host reproductive potential, and requires higher virus multiplication in reproductive organs. Thus, environmental conditions that favor reduced virus virulence without controlling its level of within-plant multiplication (i.e., tolerance) may enhance seed transmission. We tested the hypothesis that light intensity conditions that enhance plant tolerance promote virus seed transmission. To do so, we challenged 18 Arabidopsis thaliana accessions with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV) under high and low light intensity. Results indicated that higher light intensity increased TuMV multiplication and/or plant tolerance, which was associated with more efficient seed transmission. Conversely, higher light intensity reduced plant tolerance and CMV multiplication, and had no effect on seed transmission. This work provides novel insights on how environmental factors modulate plant virus transmission and contributes to understand the underlying processes.

19.
Infect Genet Evol ; 65: 187-199, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30055330

RESUMEN

During the past four decades, the scientific community has seen an exponential advance in the number, sophistication, and quality of molecular techniques and bioinformatics tools for the genetic characterization of plant virus populations. Predating these advances, the field of Phylogenetics has significantly contributed to understand important aspects of plant virus evolution. This review aims at summarizing the impact of Phylogenetics in the current knowledge on three major aspects of plant virus evolution that have benefited from the development of phylogenetic inference: (1) The identification and classification of plant virus diversity. (2) The mechanisms and forces shaping the evolution of plant virus populations. (3) The understanding of the interaction between plant virus evolution, epidemiology and ecology. The work discussed here highlights the important role of phylogenetic approaches in the study of the dynamics of plant virus populations.


Asunto(s)
Evolución Biológica , Filogenia , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Variación Genética , Virus de Plantas/clasificación , Virus de Plantas/patogenicidad
20.
Int J Mol Sci ; 19(3)2018 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-29534493

RESUMEN

The two major mechanisms of plant defense against pathogens are resistance (the host's ability to limit pathogen multiplication) and tolerance (the host's ability to reduce the effect of infection on its fitness regardless of the level of pathogen multiplication). There is abundant literature on virtually every aspect of plant resistance to pathogens. Although tolerance to plant pathogens is comparatively less understood, studies on this plant defense strategy have led to major insights into its evolution, mechanistic basis and genetic determinants. This review aims at summarizing current theories and experimental evidence on the evolutionary causes and consequences of plant tolerance to pathogens, as well as the existing knowledge on the genetic determinants and mechanisms of tolerance. Our review reveals that (i) in plant-pathogen systems, resistance and tolerance generally coexist, i.e., are not mutually exclusive; (ii) evidence of tolerance polymorphisms is abundant regardless of the pathogen considered; (iii) tolerance is an efficient strategy to reduce the damage on the infected host; and (iv) there is no evidence that tolerance results in increased pathogen multiplication. Taken together, the work discussed in this review indicates that tolerance may be as important as resistance in determining the dynamics of plant-pathogen interactions. Several aspects of plant tolerance to pathogens that still remain unclear and which should be explored in the future, are also outlined.


Asunto(s)
Inmunidad de la Planta , Adaptación Biológica , Evolución Molecular , Interacciones Huésped-Patógeno , Plantas/genética , Plantas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...