Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39131355

RESUMEN

Rat post-mitotic septal (SEP) neurons, engineered to conditionally proliferate at 33°C, differentiate when arrested at 37.5°C and can be maintained for weeks without cytotoxic effects. Nine independent cDNA libraries were made to follow arrest-induced neural differentiation and innate immune responses in normal (Nl) uninfected and CJ agent infected SEP cells. Proliferating Nl versus latently infected (CJ-) cells showed few RNA-seq differences. However arrest induced major changes. Normal cells displayed a plethora of anti-proliferative transcripts. Additionally, known neuron differentiation transcripts, e.g., Agtr2, Neuregulin-1, GDF6, SFRP4 and Prnp were upregulated. These Nl neurons also displayed many activated IFN innate immune genes, e.g., OAS1, RTP4, ISG20, GTB4, CD80 and cytokines, complement, and clusterin (CLU) that binds to misfolded proteins. In contrast, arrested highly infectious CJ+ cells (10 logs/gm) downregulated many replication controls. Furthermore, arrested CJ+ cells suppressed neuronal differentiation transcripts, including Prnp which is essential for CJ agent infection. CJ+ cells also enhanced IFN stimulated pathways, and analysis of the 342 CJ+ unique transcripts revealed additional innate immune and anti-viral-linked transcripts, e.g., Il17, ISG15, and RSAD2 (viperin). These data show: 1) innate immune transcripts are produced by normal neurons during differentiation; 2) CJ infection can enhance and expand anti-viral responses; 3) latent CJ infection epigenetically imprints many proliferative pathways to thwart complete arrest. CJ+ brain microglia, white blood cells and intestinal myeloid cells with shared transcripts may be stimulated to educe latent CJD infections that can be clinically silent for >30 years.

2.
Front Physiol ; 13: 837662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250638

RESUMEN

Immortalized uninfected septal (SEP) neurons proliferate but after physiological mitotic arrest they express differentiated neuronal characteristics including enhanced cell-to-cell membrane contacts and ≥ 8 fold increases in host prion protein (PrP). We compared proliferating uninfected and Creutzfeldt-Jakob Disease (CJD) agent infected cells with their arrested counterparts over 33 days by quantitative mRNA and protein blot analyses. Surprisingly, uninfected arrested cells increased interferon-ß (IFN-ß) mRNA by 2.5-8 fold; IFN-ß mRNA elevations were not previously associated with neuronal differentiation. SEP cells with high CJD infectivity titers produced a much larger 40-68-fold increase in IFN-ß mRNA, a classic host anti-viral response that is virucidal for RNA but not DNA viruses. High titers of CJD agent also induced dramatic decreases in host PrP, a protein needed for productive agent replication. Uninfected arrested cells produced large sustained 20-30-fold increases in PrP mRNA and protein, whereas CJD arrested cells showed only transient small 5-fold increases in PrP. A > 10-fold increase in infectivity, but not PrP misfolding, induced host PrP reductions that can limit CJD agent replication. In contrast to neuronal lineage cells, functionally distinct migratory microglia with high titers of CJD agent do not induce an IFN-ß mRNA response. Because they have 1/50th of PrP of an average brain cell, microglia would be unable to produce the many new infectious particles needed to induce a large IFN-ß response by host cells. Instead, microglia and related cells can be persistent reservoirs of infection and spread. Phase separations of agent-associated molecules in neurons, microglia and other cell types can yield new insights into the molecular structure, persistent, and evasive behavior of CJD-type agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA