Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 188: 109619, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531523

RESUMEN

The aim of this study consists of investigating the effects of the SO2, PM10, inorganic chemical elements and black carbon (BC) present in fine particulates on the acute outcomes of respiratory diseases in children up to 12 years of age living in Brazilian urban area in the southern hemisphere during the winter (2013) and summer (2013-2014) months. SO2 and PM10 concentration data were obtained from six air quality monitoring stations spatially distributed in the area. PM2.5 samples were collected at the same locations with a MiniVol sampler over a 24-h period on alternating days. The PM2.5 components were analysed using the energy dispersive X-ray fluorescence and reflectance techniques. Hospital care and admission events due to acute respiratory diseases (n = 8,987) of the coded groups JJ00-JJ99 of the International Code of Diseases (ICD-10) were obtained from three hospitals (one public and two private hospitals). To quantify the association of acute respiratory disease events with pollutant concentrations, a generalized additive model (GAM) with a Poisson distribution was applied. The results showed a greater risk of acute respiratory events due to exposure to SO2 with a relative risk of 1.28 (95% CI: 1.22-1.34) and to PM10 with a risk of 1.14 (95% CI: 1.09-1.20) on the day of exposure (lag 0). The chemical constituents present in the fine particles with the highest risk for acute respiratory diseases were Si with a risk of 1.22 (95% CI: 1.15-1.29), S with a risk of 1.09 (95% CI: 1.06-1.12), Ti with a risk of 1.09 (95% CI: 1.01-1.17), BC with a risk of 1.07 (95% CI: 1.03-1.11), Se with a risk of 1.03 (95% CI: 0.96-1.10) and Ni with a risk of 1.03 (95% CI: 0.96-1.10).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Trastornos Respiratorios , Enfermedades Respiratorias , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Brasil/epidemiología , Niño , Humanos , Incidencia , Material Particulado/análisis , Material Particulado/toxicidad , Trastornos Respiratorios/inducido químicamente , Trastornos Respiratorios/epidemiología , Enfermedades Respiratorias/inducido químicamente , Enfermedades Respiratorias/epidemiología
2.
Environ Monit Assess ; 188(3): 167, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26884354

RESUMEN

Many studies have been carried out on the environmental impact of the research stations on the Antarctic continent. However, the assessment of indoor air quality in these confined environments has been neglected. The main objectives of this study are to investigate the granulometric distribution of the indoor particles in the different compartments of the Brazilian Antarctic Station, to examine the number and mass concentration of the indoor particles, to conduct chemical and morphological analyses of the indoor PM2.5, and to identify the possible sources of the PM. The results showed that Na, K, Cl, Fe, Zn, S and Si were the main elements detected. High levels of black carbon were recorded in the workshop, which may be associated with the use of diesel vehicles. To identify the human activities related to the indoor particle emission in the station, the size distribution of the particles in the living room was monitored for seven consecutive days, during normal station operation. It was possible to identify the influence of individual processes, such as incineration, cooking and the movement of people, upon the particle size number concentration. The indoor/outdoor (I/O) ratio for the total suspended particles (TSP), PM10, PM2.5 and PM1 measured was significantly larger than those reported for urban buildings. In general, the I/O ratio distribution for all the compartments shows peak values between 2.5 and 10 µm, which is often related to human activity, such as cleaning, personnel circulation or clothing surfaces. The maximum I/O ratio at this range varied from 12 to 60. In addition, the compartments affected by combustion processes tend to present a significant number of submicron particles.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Regiones Antárticas , Tamaño de la Partícula , Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...