Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619086

RESUMEN

Harvest of fish and wildlife, both commercial and recreational, is a selective force that can induce evolutionary changes to life history and behavior. Naturally selective forces may create countering selection pressures. Assessing natural fitness represents a considerable challenge in broadcast spawners. Thus, our understanding about the relative strength of natural and fisheries selection is slim. In the field, we compared the strength and shape of harvest selection to natural selection on body size over four years and behavior over one year in a natural population of a freshwater top predator, the northern pike (Esox lucius). Natural selection was approximated by relative reproductive success via parent-offspring genetic assignments over four years. Harvest selection was measured by comparing individuals susceptible to recreational angling with individuals never captured by this gear type. Individual behavior was measured by high-resolution acoustic telemetry. Harvest and natural size selection operated with equal strength but opposing directions, and harvest size selection was consistently negative in all study years. Harvest selection also had a substantial behavioral component independent of body length, while natural behavioral selection was not documented, suggesting the potential for directional harvest selection favoring inactive, timid fish. Simulations of the outcomes of different fishing regulations showed that traditional minimum size-based harvest limits are unlikely to counteract harvest selection without being completely restrictive. Our study suggests harvest selection may be inevitable and recreational fisheries may thus favor small, inactive, shy, and difficult-to-capture fish. Increasing fractions of shy fish in angling-exploited stocks would have consequences for stock assessment and all fisheries operating with hook and line.


Asunto(s)
Evolución Biológica , Explotaciones Pesqueras , Peces , Selección Genética , Animales , Conservación de los Recursos Naturales , Aptitud Genética
2.
Ecol Appl ; 28(8): 2033-2054, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30144215

RESUMEN

Fish stocking and harvest regulations are frequently used to maintain or enhance freshwater recreational fisheries and contribute to fish conservation. However, their relative effectiveness has rarely been systematically evaluated using quantitative models that account for key size- and density-dependent ecological processes and adaptive responses of anglers. We present an integrated model of freshwater recreational fisheries where the population dynamics of two model species affect the effort dynamics of recreational anglers. With this model, we examined how stocking various fish densities and sizes (fry, fingerlings, and adults) performed relative to minimum-length limits using a variety of biological, social, and economic performance measures, while evaluating trade-offs. Four key findings are highlighted. First, stocking often augmented the exploited fish population, but size- and density-dependent bottlenecks limited the number of fry and fingerlings surviving to a catchable size in self-sustaining populations. The greatest enhancement of the catchable fish population occurred when large fish that escaped early bottlenecks were stocked, but this came at the cost of wild-stock replacement, thereby demonstrating a fundamental trade-off between fisheries benefits and conservation. Second, the relative performance of stocking naturally reproducing populations was largely independent of habitat quality and was generally low. Third, stocking was only economically advisable when natural reproduction was impaired or absent, stocking rates were low, and enough anglers benefitted from stocking to offset the associated costs. Fourth, in self-sustaining fish populations, minimum-length limits generally outperformed stocking when judged against a range of biological, social and economic objectives. By contrast, stocking in culture-based fisheries often generated substantial benefits. Collectively, our study demonstrates that size- and density-dependent processes, and broadly the degree of natural recruitment, drive the biological, social, and economic outcomes of popular management actions in recreational fisheries. To evaluate these outcomes and the resulting trade-offs, integrated fisheries-management models that explicitly consider the feedbacks among ecological and social processes are needed.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras/legislación & jurisprudencia , Modelos Biológicos , Dinámica Poblacional , Recreación
3.
Oecologia ; 178(4): 951-65, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25894093

RESUMEN

Hatching early in the season is often assumed to elevate fitness, particularly in cannibalistic fish in which size-dependent predation mortality is a major selective force. While the importance of the thermal environment for the growth of fish is undisputed, the relevance of maternal effects for offspring growth in the wild is largely unknown. Otoliths of 366 age-0 pike (Esox lucius L.) were sampled in a natural lake over three seasons. All offspring were assigned to more than 330 potential mothers using 16 informative microsatellites. We found temperature and past maternal environment (as represented by juvenile growth rate), but not female total length, to jointly contribute to explain within- and among-season size variation in juvenile pike. While there was no statistical evidence for maternal effects on offspring growth rate, fast female juvenile growth positively correlated with the offspring length in early summer. One mechanism could be related to fast-growing females spawning somewhat earlier in the season. However, the more likely mechanism emerging in our study was that fast-growing females could have been in better condition prior to spawning, in turn possibly producing higher numbers of high-quality eggs. Our study is among the few to reveal carry-over effects related to past maternal environments on offspring performance in a naturally reproducing fish stock. At the same time, our study underscores recent arguments that size-dependent maternal effects may not be expressed in the wild and that early hatching does not generally produce size advantages in light of stochastically varying temperature conditions.


Asunto(s)
Ecosistema , Esocidae , Reproducción , Estaciones del Año , Temperatura , Animales , Femenino , Agua Dulce
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA