Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Front Neurol ; 15: 1340693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500810

RESUMEN

Background: Congenital myopathies are a group of heterogeneous inherited disorders, mainly characterized by early-onset hypotonia and muscle weakness. The spectrum of clinical phenotype can be highly variable, going from very mild to severe presentations. The course also varies broadly resulting in a fatal outcome in the most severe cases but can either be benign or lead to an amelioration even in severe presentations. Muscle biopsy analysis is crucial for the identification of pathognomonic morphological features, such as core areas, nemaline bodies or rods, nuclear centralizations and congenital type 1 fibers disproportion. However, multiple abnormalities in the same muscle can be observed, making more complex the myopathological scenario. Case presentation: Here, we describe an Italian newborn presenting with severe hypotonia, respiratory insufficiency, inability to suck and swallow, requiring mechanical ventilation and gastrostomy feeding. Muscle biopsy analyzed by light microscopy showed the presence of vacuoles filled with glycogen, suggesting a metabolic myopathy, but also fuchsinophilic inclusions. Ultrastructural studies confirmed the presence of normally structured glycogen, and the presence of minirods, directing the diagnostic hypothesis toward a nemaline myopathy. An expanded Next Generation Sequencing analysis targeting congenital myopathies genes revealed the presence of a novel heterozygous c.965 T > A p. (Leu322Gln) variant in the ACTA1 gene, which encodes the skeletal muscle alpha-actin. Conclusion: Our case expands the repertoire of molecular and pathological features observed in actinopathies. We highlight the value of ultrastructural examination to investigate the abnormalities detected at the histological level. We also emphasized the use of expanded gene panels in the molecular analysis of neuromuscular patients, especially for those ones presenting multiple bioptic alterations.

2.
Front Neurol ; 15: 1359479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426167

RESUMEN

Introduction: CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description: Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion: This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.

3.
Cell Mol Life Sci ; 80(12): 373, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38007410

RESUMEN

Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Interferencia de ARN , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Enfermedad de Charcot-Marie-Tooth/metabolismo , Mutación , Hidrolasas/genética , Ratones Transgénicos
4.
Front Neurol ; 14: 1170071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332993

RESUMEN

Exercise-induced muscle stiffness is the hallmark of Brody disease, an autosomal recessive myopathy due to biallelic pathogenic variants in ATP2A1, encoding the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase SERCA1. About 40 patients have been reported so far. Our knowledge about the natural history of this disorder, genotype-phenotype correlations and the effect of symptomatic treatment is partial. This results in incomplete recognition and underdiagnosis of the disease. Here, we report the clinical, instrumental, and molecular features of two siblings presenting childhood-onset exercise-induced muscle stiffness without pain. Both the probands display difficulty in climbing stairs and running, frequent falls, delayed muscle relaxation after exertion. Cold temperatures worsen these symptoms. No myotonic discharges were observed at electromyography. Whole Exome Sequencing analysis in the probands revealed the presence of two ATP2A1 variants: the previously reported frameshift microdeletion c.2464delC and the likely pathogenic novel splice-site variant c.324 + 1G > A, whose detrimental effect was demonstrated in ATP2A1 transcript analysis. The bi-allelic inheritance was verified by Sanger sequencing in the unaffected parents. This study expands the molecular defects associated with Brody myopathy.

5.
Front Neurol ; 13: 845383, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081873

RESUMEN

Non-dystrophic myotonias (NDM) encompass chloride and sodium channelopathy. Mutations in CLCN1 lead to either the autosomal dominant form or the recessive form of myotonia congenita (MC). The main symptom is stiffness worsening after rest and improving by physical exercise. Patients with recessive mutations often show muscle hypertrophy, and transient weakness mostly in their lower limbs. Mutations in SCN4A can lead to Hyper-, Hypo- or Normo-kalemic Periodic Paralysis or to different forms of myotonia (Paramyotonia Congenita-PMC and Sodium Channel Myotonia-SCM and severe neonatal episodic laryngospasm-SNEL). SCM often presents facial muscle stiffness, cold sensitivity, and muscle pain, whereas myotonia worsens in PMC patients with the repetition of the muscle activity and cold. Patients affected by chloride or sodium channelopathies may show similar phenotypes and symptoms, making the diagnosis more difficult to reach. Herein we present a woman in whom sodium and chloride channelopathies coexist yielding a complex phenotype with features typical of both MC and PMC. Disease onset was in the second decade with asthenia, weakness, warm up and limb stiffness, and her symptoms had been worsening through the years leading to frequent heavy retrosternal compression, tachycardia, stiffness, and symmetrical pain in her lower limbs. She presented severe lid lag myotonia, a hypertrophic appearance at four limbs and myotonic discharges at EMG. Her symptoms have been triggered by exposure to cold and her daily life was impaired. All together, clinical signs and instrumental data led to the hypothesis of PMC and to the administration of mexiletine, then replaced by acetazolamide because of gastrointestinal side effects. Analysis of SCN4A revealed a new variant, p.Glu1607del. Nonetheless the severity of myotonia in the lower limbs and her general stiffness led to hypothesize that the impairment of sodium channel, Nav1.4, alone could not satisfactorily explain the phenotype and a second genetic "factor" was hypothesized. CLCN1 was targeted, and p.Met485Val was detected in homozygosity. This case highlights that proper identification of signs and symptoms by an expert neurologist is crucial to target a successful genetic diagnosis and appropriate therapy.

7.
Neurol Sci ; 42(12): 5359-5363, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34378097

RESUMEN

INTRODUCTION: Mutations of the skeletal muscle sodium channel gene SCN4A are associated with several neuromuscular disorders including hyper/hypokaliemic periodic paralysis, paramyotonia congenita and sodium channel myotonia. These disorders are distinguished from dystrophic myotonias by the absence of progressive weakness and extramuscular systemic involvement. METHODS: We present an Italian family with 2 subjects carrying a p.Asn1180Ile mutation in SCN4A gene showing a peculiar clinical picture characterized by the association of myopathic features and myotonia. RESULTS: The clinical, electromyographic and histological findings of these patients are reported. The possible pathogenicity of the mutation was tested by three different software, all giving positive results. DISCUSSION: This is the first report of a dominant, heterozygous mutation in SCN4A causing a complex phenotype of non-congenital myopathy and myotonic syndrome. We suggest that, in patients with myotonia and myopathy not related to dystrophic myotonias, the sequence analysis of SCN4A gene should be performed.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Miotonía , Trastornos Miotónicos , Humanos , Mutación/genética , Miotonía/genética , Miotonía Congénita/genética , Trastornos Miotónicos/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Linaje
8.
Front Neurol ; 12: 664618, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262519

RESUMEN

Ryanodine receptor type 1-related congenital myopathies are the most represented subgroup among congenital myopathies (CMs), typically presenting a central core or multiminicore muscle histopathology and high clinical heterogeneity. We evaluated a cohort of patients affected with Ryanodine receptor type 1-related congenital myopathy (RYR1-RCM), focusing on four patients who showed a severe congenital phenotype and underwent a comprehensive characterization at few months of life. To date there are few reports on precocious instrumental assessment. In two out of the four patients, a muscle biopsy was performed in the first days of life (day 5 and 37, respectively) and electron microscopy was carried out in two patients detecting typical features of congenital myopathy. Two patients underwent brain MRI in the first months of life (15 days and 2 months, respectively), one also a fetal brain MRI. In three children electromyography was performed in the first week of life and neurogenic signs were excluded. Muscle MRI obtained within the first years of life showed a typical pattern of RYR1-CM. The diagnosis was confirmed through genetic analysis in three out of four cases using Next Generation Sequencing (NGS) panels. The development of a correct and rapid diagnosis is a priority and may lead to prompt medical management and helps optimize inclusion in future clinical trials.

9.
Mol Genet Genomic Med ; 8(9): e1320, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32578970

RESUMEN

BACKGROUND: Hereditary myosin myopathies are a group of rare muscle disorders, caused by mutations in genes encoding for skeletal myosin heavy chains (MyHCs). MyHCIIa is encoded by MYH2 and is expressed in fast type 2A and 2B muscle fibers. MYH2 mutations are responsible for an autosomal dominant (AD) progressive myopathy, characterized by the presence of rimmed vacuoles and by a reduction in the number and size of type 2A fibers, and a recessive early onset myopathy characterized by complete loss of type 2A fibers. Recently, a patient with a homozygous mutation but presenting a dominant phenotype has been reported. METHODS: The patient was examined thoroughly and two muscle biopsies were performed through the years. NGS followed by confirmation in Sanger sequencing was used to identify the genetic cause. RESULTS: We describe the second case presenting with late-onset ophthalmoparesis, ptosis, diffuse muscle weakness, and histopathological features typical for AD forms but with a recessive MYH2 genotype. CONCLUSION: This report contributes to expand the clinical and genetic spectrum of MYH2 myopathies and to increase the awareness of these very rare diseases.


Asunto(s)
Miopatías Estructurales Congénitas/genética , Cadenas Pesadas de Miosina/genética , Fenotipo , Adulto , Genes Recesivos , Humanos , Masculino , Fibras Musculares Esqueléticas/ultraestructura , Mutación , Miopatías Estructurales Congénitas/patología , Cadenas Pesadas de Miosina/metabolismo , Vacuolas/ultraestructura
10.
Front Neurol ; 11: 255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411069

RESUMEN

Sodium channel myotonia is a form of muscle channelopathy due to mutations that affect the Nav1.4 channel. We describe seven families with a series of symptoms ranging from asymptomatic to clearly myotonic signs that have in common two novel mutations, p.Ile215Thr and p.Gly241Val, in the first domain of the Nav1.4 channel. The families described have been clinically and genetically evaluated. p.Ile215Thr and p.Gly241Val lie, respectively, on extracellular and intracellular loops of the first domain of the Nav1.4 channel. We assessed that the p.Ile215Thr mutation can be related to a founder effect in people from Southern Italy. Electrophysiological evaluation of the channel function showed that the voltage dependence of the activation for both the mutant channels was significantly shifted toward hyperpolarized potentials (Ile215Thr: -28.6 ± 1.5 mV and Gly241Val: -30.2 ± 1.3 mV vs. WT: -18.5 ± 1.3 mV). The slow inactivation was also significantly affected, whereas fast inactivation showed a different behavior in the two mutants. We characterized two novel mutations of the SCN4A gene expanding the knowledge about genetics of mild forms of myotonia, and we present, to our knowledge, the first homozygous patient with sodium channel myotonia.

11.
Carcinogenesis ; 40(1): 194-201, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30403777

RESUMEN

Amylo-α-1,6-glucosidase,4-α-glucanotransferase (AGL) is an enzyme primarily responsible for glycogen debranching. Germline mutations lead to glycogen storage disease type III (GSDIII). We recently found AGL to be a tumor suppressor in xenograft models of human bladder cancer (BC) and low levels of AGL expression in BC are associated with poor patient prognosis. However, the impact of low AGL expression on the susceptibility of normal bladder to carcinogenesis is unknown. We address this gap by developing a germline Agl knockout (Agl-/-) mouse that recapitulates biochemical and histological features of GSDIII. Agl-/- mice exposed to N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) had a higher BC incidence compared with wild-type mice (Agl+/+). To determine if the increased BC incidence observed was due to decreased Agl expression in the urothelium specifically, we developed a urothelium-specific conditional Agl knockout (Aglcko) mouse using a Uroplakin II-Cre allele. BBN-induced carcinogenesis experiments repeated in Aglcko mice revealed that Aglcko mice had a higher BC incidence than control (Aglfl/fl) mice. RNA sequencing revealed that tumors from Agl-/- mice had 19 differentially expressed genes compared with control mice. An 'Agl Loss' gene signature was developed and found to successfully stratify normal and tumor samples in two BC patient datasets. These results support the role of AGL loss in promoting carcinogenesis and provide a rationale for evaluating Agl expression levels, or Agl Loss gene signature scores, in normal urothelium of populations at risk of BC development such as older male smokers.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/fisiología , Neoplasias de la Vejiga Urinaria/etiología , Animales , Butilhidroxibutilnitrosamina , Ingeniería Genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia de ARN
12.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3407-3417, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30076962

RESUMEN

Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet. No common agreement was reached on sugar restriction and treatment in adulthood. We administered two dietary regimens differing in their protein and carbohydrate content, high-protein (HPD) and high-protein/glucose-free (GFD), to our mouse model of GSDIII, starting at one month of age. Mice were monitored, either by histological, biochemical and molecular analysis and motor functional tests, until 10 months of age. GFD ameliorated muscle performance up to 10 months of age, while HPD showed little improvement only in young mice. In GFD mice, a decreased muscle glycogen content and fiber vacuolization was observed, even in aged animals indicating a protective role of proteins against skeletal muscle degeneration, at least in some districts. Hepatomegaly was reduced by about 20%. Moreover, the long-term administration of GFD did not worsen serum parameters even after eight months of high-protein diet. A decreased phosphofructokinase and pyruvate kinase activities and an increased expression of Krebs cycle and gluconeogenesis genes were seen in the liver of GFD fed mice. Our data show that the concurrent use of proteins and a strictly controlled glucose supply could reduce muscle wasting, and indicate a better metabolic control in mice with a glucose-free/high-protein diet.


Asunto(s)
Dieta Rica en Proteínas/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo III/dietoterapia , Hepatomegalia/dietoterapia , Músculo Esquelético/fisiopatología , Animales , Ciclo del Ácido Cítrico , Dieta Rica en Proteínas y Pobre en Hidratos de Carbono/métodos , Modelos Animales de Enfermedad , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo III/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo III/fisiopatología , Hepatomegalia/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Fosfofructoquinasas/metabolismo , Condicionamiento Físico Animal , Piruvato Quinasa/metabolismo , Resultado del Tratamiento
13.
Mol Ther ; 26(3): 890-901, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29396266

RESUMEN

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.


Asunto(s)
Terapia Genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Fenotipo , Animales , Biomarcadores , Glucemia , Dependovirus/genética , Modelos Animales de Enfermedad , Activación Enzimática , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo III/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo III/terapia , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Noqueados , Especificidad de Órganos
14.
Neurology ; 86(22): 2100-8, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27164696

RESUMEN

OBJECTIVE: We performed a clinical, functional, and pharmacologic characterization of the novel p.P1158L Nav1.4 mutation identified in a young girl presenting a severe myotonic phenotype. METHODS: Wild-type hNav1.4 channel and P1158L mutant were expressed in tsA201 cells for functional and pharmacologic studies using patch-clamp. RESULTS: The patient shows pronounced myotonia, slowness of movements, and generalized muscle hypertrophy. Because of general discomfort with mexiletine, she was given flecainide with satisfactory response. In vitro, mutant channels show a slower current decay and a rightward shift of the voltage dependence of fast inactivation. The voltage dependence of activation and slow inactivation were not altered. Mutant channels were less sensitive to mexiletine, whereas sensitivity to flecainide was not altered. The reduced inhibition of mutant channels by mexiletine was also observed using clinically relevant drug concentrations in a myotonic-like condition. CONCLUSIONS: Clinical phenotype and functional alterations of P1158L support the diagnosis of myotonia permanens. Impairment of fast inactivation is consistent with the possible role of the channel domain III S4-S5 loop in the inactivation gate docking site. The reduced sensitivity of P1158L to mexiletine may have contributed to the unsatisfactory response of the patient. The success of flecainide therapy underscores the usefulness of in vitro functional studies to help in the choice of the best drug for each individual.


Asunto(s)
Mutación , Miotonía Congénita/tratamiento farmacológico , Miotonía Congénita/genética , Canal de Sodio Activado por Voltaje NAV1.4/genética , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Línea Celular , Niño , Diagnóstico Diferencial , Femenino , Flecainida/farmacología , Flecainida/uso terapéutico , Humanos , Mexiletine/efectos adversos , Mexiletine/farmacología , Mexiletine/uso terapéutico , Miotonía Congénita/diagnóstico , Miotonía Congénita/fisiopatología , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Pruebas de Farmacogenómica/métodos , Medicina de Precisión/métodos , Investigación Biomédica Traslacional , Bloqueadores del Canal de Sodio Activado por Voltaje/efectos adversos , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
16.
Sci Rep ; 5: 11746, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26123042

RESUMEN

Spinal muscular atrophy (SMA) is a primary genetic cause of infant mortality due to mutations in the Survival Motor Neuron (SMN) 1 gene. No cure is available. Antisense oligonucleotides (ASOs) aimed at increasing SMN levels from the paralogous SMN2 gene represent a possible therapeutic strategy. Here, we tested in SMA human induced pluripotent stem cells (iPSCs) and iPSC-differentiated motor neurons, three different RNA approaches based on morpholino antisense targeting of the ISSN-1, exon-specific U1 small nuclear RNA (ExSpeU1), and Transcription Activator-Like Effector-Transcription Factor (TALE-TF). All strategies act modulating SMN2 RNA: ASO affects exon 7 splicing, TALE-TF increase SMN2 RNA acting on the promoter, while ExSpeU1 improves pre-mRNA processing. These approaches induced up-regulation of full-length SMN mRNA and differentially affected the Delta-7 isoform: ASO reduced this isoform, while ExSpeU1 and TALE-TF increased it. All approaches upregulate the SMN protein and significantly improve the in vitro SMA motor neurons survival. Thus, these findings demonstrate that therapeutic tools that act on SMN2 RNA are able to rescue the SMA disease phenotype. Our data confirm the feasibility of SMA iPSCs as in vitro disease models and we propose novel RNA approaches as potential therapeutic strategies for treating SMA and other genetic neurological disorders.


Asunto(s)
Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/terapia , Secuencia de Bases , Supervivencia Celular , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Terapia Genética , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Morfolinos/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Fenotipo , Regiones Promotoras Genéticas , ARN Nuclear Pequeño/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Factores de Transcripción/genética
17.
Biochim Biophys Acta ; 1842(11): 2318-28, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25092169

RESUMEN

Glycogen storage disease type III is an autosomal recessive disease characterized by a deficiency in the glycogen debranching enzyme, encoded by AGL. Essential features of this disease are hepatomegaly, hypoglycemia, hyperlipidemia, and growth retardation. Progressive skeletal myopathy, neuropathy, and/or cardiomyopathy become prominent in adults. Currently, there is no available cure. We generated an Agl knockout mouse model by deletion of the carboxy terminus of the protein, including the carboxy end of the glucosidase domain and the glycogen-binding domain. Agl knockout mice presented serious hepatomegaly, but we did not observe signs of cirrhosis or adenomas. In affected tissues, glycogen storage was higher than in wild-type mice, even in the central nervous system which has never been tested in GSDIII patients. The biochemical findings were in accordance with histological data, which clearly documented tissue impairment due to glycogen accumulation. Indeed, electron microscopy revealed the disruption of contractile units due to glycogen infiltrations. Furthermore, adult Agl knockout animals appeared less prompt to move, and they exhibited kyphosis. Three-mo-old Agl knockout mice could not run, and adult mice showed exercise intolerance. In addition, older affected animals exhibited an accelerated respiratory rate even at basal conditions. This observation was correlated with severe glycogen accumulation in the diaphragm. Diffuse glycogen deposition was observed in the tongues of affected mice. Our results demonstrate that this Agl knockout mouse is a reliable model for human glycogenosis type III, as it recapitulates the essential phenotypic features of the disease.

18.
Am J Hum Genet ; 92(2): 293-300, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23352259

RESUMEN

Syndromes associated with multiple mtDNA deletions are due to different molecular defects that can result in a wide spectrum of predominantly adult-onset clinical presentations, ranging from progressive external ophthalmoplegia (PEO) to multisystemic disorders of variable severity. The autosomal-dominant form of PEO is genetically heterogeneous. Recently, causative mutations have been reported in several nuclear genes that encode proteins of the mtDNA replisome machinery (POLG, POLG2, and C10orf2) or that are involved in pathways for the synthesis of deoxyribonuclotides (ANT1 and RRM2B). Despite these findings, putative mutations remain unknown in half of the subjects with PEO. We report the identification, by exome sequencing, of mutations in DNA2 in adult-onset individuals with a form of mitochondrial myopathy featuring instability of muscle mtDNA. DNA2 encodes a helicase/nuclease family member that is most likely involved in mtDNA replication, as well as in the long-patch base-excision repair (LP-BER) pathway. In vitro biochemical analysis of purified mutant proteins revealed a severe impairment of nuclease, helicase, and ATPase activities. These results implicate human DNA2 and the LP-BER pathway in the pathogenesis of adult-onset disorders of mtDNA maintenance.


Asunto(s)
ADN Helicasas/genética , ADN Mitocondrial/genética , Inestabilidad Genómica/genética , Miopatías Mitocondriales/enzimología , Miopatías Mitocondriales/genética , Mutación/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada/genética , ADN Helicasas/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Músculos/patología , Polimorfismo de Nucleótido Simple/genética
19.
J Neurol Sci ; 318(1-2): 65-71, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22521272

RESUMEN

Myotonia congenita is an autosomal dominantly or recessively inherited muscle disorder causing impaired muscle relaxation and variable degrees of permanent muscle weakness, abnormal currents linked to the chloride channel gene (CLCN1) encoding the chloride channel on skeletal muscle membrane. We describe 12 novel mutations: c.1606G>C (p.Val536Leu), c.2533G>A (p.Gly845Ser), c.2434C>T (p.Gln812X), c.1499T>G (p.E500X), c.1012C>T (p.Arg338X), c.2403+1G>A, c.2840T>A (p.Val947Glu), c.1598C>T (p.Thr533Ile), c.1110delC, c.590T>A (p.Ile197Arg), c.2276insA Fs800X, c.490T>C (p.Trp164Arg) in 22 unrelated Italian patients. To further understand the functional outcome of selected missense mutations (p.Trp164Arg, p.Ile197Arg and p.Gly845Ser, and the previously reported p.Gly190Ser) we characterized the biophysical properties of mutant ion channels in tsA cell model. In the physiological range of muscle membrane potential, all the tested mutations, except p.Gly845Ser, reduced the open probability, increased the fast and slow components of deactivation and affected pore properties. This suggests a decrease in macroscopic chloride currents impairing membrane potential repolarization and causing hyperexcitability in muscle membranes. Detailed clinical features are given of the 8 patients characterized by cell electrophysiology. These data expand the spectrum of CLCN1 mutations and may contribute to genotype-phenotype correlations. Furthermore, we provide insights into the fine protein structure of ClC-1 and its physiological role in the maintenance of membrane resting potential.


Asunto(s)
Canales de Cloruro/genética , Predisposición Genética a la Enfermedad/genética , Mutación Missense/genética , Miotonía Congénita/genética , Adolescente , Adulto , Anciano , Línea Celular , Membrana Celular/genética , Membrana Celular/patología , Niño , Conductividad Eléctrica , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Miotonía Congénita/patología , Miotonía Congénita/fisiopatología , Técnicas de Placa-Clamp , Adulto Joven
20.
J Hum Genet ; 57(3): 170-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22089644

RESUMEN

Glycogen storage disease type III (GSD III) is an autosomal recessive inborn error of metabolism caused by mutations in the glycogen debranching enzyme amylo-1,6-glucosidase gene, which is located on chromosome 1p21.2. GSD III is characterized by the storage of structurally abnormal glycogen, termed limit dextrin, in both skeletal and cardiac muscle and/or liver, with great variability in resultant organ dysfunction. The spectrum of AGL gene mutations in GSD III patients depends on ethnic group. The most prevalent mutations have been reported in the North African Jewish population and in an isolate such as the Faroe Islands. Here, we present the molecular and biochemical analyses of 22 Tunisian GSD III patients. Molecular analysis revealed three novel mutations: nonsense (Tyr1148X) and two deletions (3033_3036del AATT and 3216_3217del GA) and five known mutations: three nonsense (R864X, W1327X and W255X), a missense (R524H) and an acceptor splice-site mutation (IVS32-12A>G). Each mutation is associated to a specific haplotype. This is the first report of screening for mutations of AGL gene in the Tunisian population.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Adolescente , Población Negra/genética , Niño , Preescolar , Femenino , Haplotipos , Humanos , Lactante , Masculino , Mutación , Polimorfismo de Nucleótido Simple , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...