Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(56): 118161-118174, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940818

RESUMEN

For centuries, desalination, in one way or another, has helped alleviate water scarcity. Over time, desalination has gone through an evolutionary process influenced largely by available contemporary technology. This improvement, for the most part, was reflected in the energy efficiency and, in turn, in terms of the cost-effectiveness of this practice. Thanks to such advancements, by the 1960s, the desalination industry experienced notable exponential growth, becoming a formidable option to supplement conventional water resources with a reliable non-conventional resource. That said, often, there are pressing associated issues, most notably environmental, socioeconomic, health, and relatively recently, agronomic concerns. Such reservations raise the question of whether desalination is indeed a sustainable solution to current water supply problems. This is exceptionally important to understand in light of the looming water and food crises. This paper, thus, tends to review these potential issues from the sustainability perspective. It is concluded that the aforementioned issues are indeed major concerns, but they can be mitigated by actions that consider the local context. These may be either prophylactic, proactive measures that require careful planning to tailor the situation to best fit a given region or reactive measures such as incorporating pre- (e.g., removing particles, debris, microorganisms, suspended solids, and silt from the intake water prior to the desalination process) and post-treatments (e.g., reintroducing calcium and magnesium ions to water to enhance its quality for irrigation purposes) to target specific shortcomings of desalination.


Asunto(s)
Purificación del Agua , Agua , Abastecimiento de Agua , Recursos Hídricos
2.
J Hydrol (Amst) ; 570: 220-235, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31007277

RESUMEN

This work investigates regionalization techniques for large-scale model applications in the frame of a pan-European assessment of water resources covering approx. 740,000 km2 in Western Europe. Using the SWAT platform, four variants of the similarity based regionalization approach were compared. The first two involved unsupervised clustering to define hydrological regions before performing hydrological model calibration, whereas the last two involved supervised clustering after performing calibration. Similarity is defined using Partial Least Squares Regression (PLSR) analysis that identifies watershed physiographic characteristics that are most relevant for the selected hydrological response indices. The PLSR results indicate that typically available watershed characteristics such as geomorphology, land-use, climate, and soil properties describe reasonably well the average hydrological conditions but poorly the extreme events. Regionalization variants considering unsupervised clustering and supervised clustering performed similarly well when using all available information. However, results indicate that supervised clustering uses data more efficiently and may be more suitable when data are scarce. It is demonstrated that parsimonious use of available data can be achieved using both regionalization techniques. Finally, model performance consistently becomes acceptable by calibrating watersheds covering only 10% of the model domain, thus, making the calibration task affordable in terms of time and computational resources required.

3.
J Environ Qual ; 43(1): 145-54, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25602548

RESUMEN

The Water Framework Directive of the European Union requires member states to achieve good ecological status of all water bodies. A harmonized pan-European assessment of water resources availability and quality, as affected by various management options, is necessary for a successful implementation of European environmental legislation. In this context, we developed a methodology to predict surface water flow at the pan-European scale using available datasets. Among the hydrological models available, the Soil Water Assessment Tool was selected because its characteristics make it suitable for large-scale applications with limited data requirements. This paper presents the results for the Danube pilot basin. The Danube Basin is one of the largest European watersheds, covering approximately 803,000 km and portions of 14 countries. The modeling data used included land use and management information, a detailed soil parameters map, and high-resolution climate data. The Danube Basin was divided into 4663 subwatersheds of an average size of 179 km. A modeling protocol is proposed to cope with the problems of hydrological regionalization from gauged to ungauged watersheds and overparameterization and identifiability, which are usually present during calibration. The protocol involves a cluster analysis for the determination of hydrological regions and multiobjective calibration using a combination of manual and automated calibration. The proposed protocol was successfully implemented, with the modeled discharges capturing well the overall hydrological behavior of the basin.

4.
Environ Monit Assess ; 118(1-3): 179-93, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16897541

RESUMEN

San Vicente Bay is a coastal shallow embayment in Central Chile with multiple uses, one of which is receiving wastewater from industrial fisheries, steel mill effluents, and domestic sewage. A simulation model was developed and applied to dissolved oxygen consumption by organic residues released into this embayment. Three compartments were established as function of: depth, circulation and outfall location. The model compartments had different volumes, and their oxygen saturation value was used as baseline. The parameters: (a) BOD5 of the industrial and urban effluents, (b) oxygen demand by organic sediments, (c) respiration, (d) photosynthesis and (e) re-aeration were included in the model. Iteration results of the model showed severe alterations in Compartment 1, with a decrease of 65% in the oxygen below saturation. Compartment 2 showed a small decline (10%) and compartment 3 did not show apparent changes in oxygen values. Measures recommended for remediation were to decrease the BOD5 loading by 30% in the affected sector. Iteration of the model for 200 h following recommendations derived from the preceding results produced an increase in saturation of 60% (5 ml O2 L(-1)), which suggested an improvement of the environmental conditions.


Asunto(s)
Modelos Teóricos , Oxígeno/análisis , Monitoreo del Ambiente , Explotaciones Pesqueras , Residuos Industriales , Aguas del Alcantarillado , Administración de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA