Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(3): 757-770, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38481677

RESUMEN

Intranasal treatment, combined with vaccination, has the potential to slow mutational evolution of viruses by reducing transmission and replication. Here, we illustrate the development of a SARS-CoV-2 receptor-binding domain (RBD) nanoCLAMP and demonstrate its potential as an intranasally administered therapeutic. A multi-epitope nanoCLAMP was made by fusing a pM affinity single-domain nanoCLAMP (P2710) to alternate epitope-binding nanoCLAMP, P2609. The resulting multimerized nanoCLAMP P2712 had sub-pM affinity for the Wuhan and South African (B.1.351) RBD (KD < 1 pM) and decreasing affinity for the Delta (B.1.617.2) and Omicron (B.1.1.529) variants (86 pM and 19.7 nM, respectively). P2712 potently inhibited the ACE2:RBD interaction, suggesting its utility as a therapeutic. With an IC50 = 0.4 ± 0.1 nM obtained from neutralization experiments using pseudoviral particles, nanoCLAMP P2712 protected K18-hACE2 mice from SARS-CoV-2 infection, reduced viral loads in the lungs and brains, and reduced associated upregulation of inflammatory cytokines and chemokines. Together, our findings warrant further investigation into the development of nanoCLAMPs as effective intranasally delivered COVID-19 therapeutics.

4.
Bioelectrochemistry ; 153: 108479, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37329846

RESUMEN

Electrochemical biosensors are one of the best choices for the sensing of biomarkers due to their high performance, low cost, miniaturization, and wide applicability. However, like for any sensing process, electrode fouling affects severely the analytical performance of the sensor, such as sensitivity, detection limit, reproducibility, and overall reliability. Fouling arises from nonspecific adsorption of different components present in the sensing medium and in particular in complex biofluids such as full blood. The complex composition of blood where biomarkers are present at extremely low concentrations compared to the rest of the fluid composition makes electrochemical biosensing challenging. Direct biomarker analysis within full blood samples remains however central for the future development in electrochemical-based diagnostics. Herein, we aim to provide short discussion of past and more recent strategies and concepts employed to diminish background noise due to surface fouling and overcome current hurdles for the implementation and commercialisation of electrochemical-based biosensors for medical diagnostics of protein biomarkers in a point of care format.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Electrodos , Proteínas , Biomarcadores
5.
Anal Bioanal Chem ; 415(1): 27-34, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36396732

RESUMEN

Since the SARS-CoV-2 pandemic, the potential of exhaled breath (EB) to provide valuable information and insight into the health status of a person has been revisited. Mass spectrometry (MS) has gained increasing attention as a powerful analytical tool for clinical diagnostics of exhaled breath aerosols (EBA) and exhaled breath condensates (EBC) due to its high sensitivity and specificity. Although MS will continue to play an important role in biomarker discovery in EB, its use in clinical setting is rather limited. EB analysis is moving toward online sampling with portable, room temperature operable, and inexpensive point-of-care devices capable of real-time measurements. This transition is happening due to the availability of highly performing biosensors and the use of wearable EB collection tools, mostly in the form of face masks. This feature article will outline the last developments in the field, notably the novel ways of EBA and EBC collection and the analytical aspects of the collected samples. The inherit non-invasive character of the sample collection approach might open new doors for efficient ways for a fast, non-invasive, and better diagnosis.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Aerosoles y Gotitas Respiratorias , Biomarcadores/análisis , Espectrometría de Masas , Pruebas Respiratorias/métodos , Espiración
6.
Nanoscale ; 14(34): 12247-12256, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36000238

RESUMEN

Angiotensin-converting enzyme (ACE) inhibitors play an important role in the development of anti-hypertension approaches, with ramipril being one of the most widely used ACE inhibitor prodrugs orally administered once or twice a day. Due to its low bioavailability, large amounts have to be administered to obtain a therapeutic effect. In this work, we propose a ramipril loaded pharmaceutical formulation in contact with an electrothermal actuator based on a gold nanohole array as an efficient approach to increase the transdermal ramipril flux. Using rats as an in vivo model, the effect on the systolic and diastolic blood pressure is evaluated, showing that under optimized conditions the blood pressure could be regulated. Heat activation resulted in total drug delivery out of a bandage loaded with 1 mg ramipril, revealing a flux of 50.9 ± 2.8 µg cm-2 h-1. Importantly, heat-based transdermal dispensing allowed efficient and rapid delivery of ramipril in spontaneously hypertensive rats, with its active form (ramiprilat) detected in blood as early as 5 minutes after delivery onset, accompanied by significant decrease in blood pressure.


Asunto(s)
Hipertensión , Ramipril , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Calor , Hipertensión/tratamiento farmacológico , Ramipril/farmacología , Ratas
7.
Biosensors (Basel) ; 12(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35884352

RESUMEN

The ongoing highly contagious Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underlines the fundamental position of diagnostic testing in outbreak control by allowing a distinction of the infected from the non-infected people. Diagnosis of COVID-19 remains largely based on reverse transcription PCR (RT-PCR), identifying the genetic material of the virus. Molecular testing approaches have been largely proposed in addition to infectivity testing of patients via sensing the presence of viral particles of SARS-CoV-2 specific structural proteins, such as the spike glycoproteins (S1, S2) and the nucleocapsid (N) protein. While the S1 protein remains the main target for neutralizing antibody treatment upon infection and the focus of vaccine and therapeutic design, it has also become a major target for the development of point-of care testing (POCT) devices. This review will focus on the possibility of surface plasmon resonance (SPR)-based sensing platforms to convert the receptor-binding event of SARS-CoV-2 viral particles into measurable signals. The state-of-the-art SPR-based SARS-CoV-2 sensing devices will be provided, and highlights about the applicability of plasmonic sensors as POCT for virus particle as well as viral protein sensing will be discussed.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/diagnóstico , Humanos , Pandemias , Virión
8.
Commun Med (Lond) ; 2: 56, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619829

RESUMEN

Background: An ongoing need during the COVID-19 pandemic has been the requirement for accurate and efficient point-of-care testing platforms to distinguish infected from non-infected people, and to differentiate SARS-CoV-2 infections from other viruses. Electrochemical platforms can detect the virus via its envelope spike protein by recording changes in voltammetric signals between samples. However, this remains challenging due to the limited sensitivity of these sensing platforms. Methods: Here, we report on a nanobody-functionalized electrochemical platform for the rapid detection of whole SARS-CoV-2 viral particles in complex media such as saliva and nasopharyngeal swab samples. The sensor relies on the functionalization of gold electrode surface with highly-oriented Llama nanobodies specific to the spike protein receptor binding domain (RBD). The device provides results in 10 min of exposure to 200 µL of unprocessed samples with high specificity to SARS-CoV-2 viral particles in human saliva and nasopharyngeal swab samples. Results: The developed sensor could discriminate between different human coronavirus strains and other respiratory viruses, with 90% positive and 90% negative percentage agreement on 80 clinical samples, as compared to RT-qPCR. Conclusions: We believe this diagnostic concept, also validated for RBD mutants and successfully tested on Delta variant samples, to be a powerful tool to detect patients' infection status, easily extendable to other viruses and capable of overcoming sensing-related mutation effects.

9.
Nanoscale Horiz ; 7(2): 174-184, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35039816

RESUMEN

Painless and controlled on-demand drug delivery is the ultimate goal for the management of various chronic diseases, including diabetes. To achieve this purpose, microneedle patches are gaining increased attention. While degradable microneedle (MN) arrays are widely employed, the use of non-dissolving MN patches remains a challenge to overcome. In this study, we demonstrate that crosslinking gelatin methacrylate with polyethylene glycol diacrylate (PEGDA) is potent for engineering non-dissolving MN arrays. Incorporation of MoS2 nanosheets as a photothermal component into MN hydrogels results in MNs featuring on-demand release properties. An optimized MoS2-MN array patch formed using a hydrogel solution containing 500 µg mL-1 of MoS2 and photochemically crosslinked for 5 min shows required mechanical behavior under a normal compressive load to penetrate the stratum corneum of mice or pig skin and allows the delivery of macromolecular therapeutics such as insulin upon swelling. Using ex vivo and in vivo models, we show that the MoS2-MN patches can be used for loading and releasing insulin for therapeutic purposes. Indeed, transdermal administration of insulin loaded into MoS2-MN patches reduces blood glucose levels in C57BL/6 mice and mini-pigs comparably to subcutaneously injected insulin. We believe that this on-demand delivery system might alter the current insulin therapies and might be a potential approach for delivery of other proteins.


Asunto(s)
Gelatina , Insulina , Administración Cutánea , Animales , Insulina/uso terapéutico , Metacrilatos , Ratones , Ratones Endogámicos C57BL , Agujas , Porcinos , Porcinos Enanos
10.
Anal Bioanal Chem ; 414(1): 103-113, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33616686

RESUMEN

Point-of-care (POC) technologies and testing programs hold great potential to significantly improve diagnosis and disease surveillance. POC tests have the intrinsic advantage of being able to be performed near the patient or treatment facility, owing to their portable character. With rapid results often in minutes, these diagnostic platforms have a high positive impact on disease management. POC tests are, in addition, advantageous in situations of a shortage of skilled personnel and restricted availability of laboratory-based analytics. While POC testing programs are widely considered in addressing health care challenges in low-income health systems, the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections could largely benefit from fast, efficient, accurate, and cost-effective point-of-care testing (POCT) devices for limiting COVID-19 spreading. The unrestrained availability of SARS-CoV-2 POC tests is indeed one of the adequate means of better managing the COVID-19 outbreak. A large number of novel and innovative solutions to address this medical need have emerged over the last months. Here, we critically elaborate the role of the surface ligands in the design of biosensors to cope with the current viral outbreak situation. Their notable effect on electrical and electrochemical sensors' design will be discussed in some given examples. Graphical abstract.


Asunto(s)
Antígenos Virales/análisis , Técnicas Biosensibles/métodos , Prueba de COVID-19/métodos , COVID-19/diagnóstico , Pruebas en el Punto de Atención/tendencias , SARS-CoV-2/inmunología , Antígenos Virales/inmunología , COVID-19/virología , Técnicas Electroquímicas , Humanos , Ligandos , Sistemas de Atención de Punto
11.
Pathogens ; 10(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358011

RESUMEN

Vaccination remains one of the most effective tools to prevent infectious diseases. To ensure that the best possible antigenic components are chosen to stimulate a cognitive immune response, boosting antigen presentation using adjuvants is common practice. Nanodiamond-based adjuvants are proposed here as a rapid and versatile platform for antigen conjugation, utilizing peptides common to different pathogenic strains and making this strategy a good candidate for a "ready-to-use" vaccine. Initiation of an inflammatory reaction with a resulting immune response is based on the ability of living organisms to entrap nanostructures such as nanodiamonds with neutrophil extracellular traps (NETs) formation. In this work, coronavirus peptide homological for MERS-CoV, fusion inhibitor, was conjugated to nanodiamonds and used to induce neutrophilic-driven self-limiting inflammation. The resulting adjuvant was safe and did not induce any tissue damage at the site of injection. Mice immunization resulted in IgG titers of »,000 within 28 days. Immunization of rabbits resulted in the formation of a high level of antibodies persistently present for up to 120 days after the first immunization (animal lifespan ~3 years). The peptide used for immunization proved to be reactive with sera of convalescent COVID patients, demonstrating the possibility of developing pancoronaviral vaccine candidates.

12.
Biosens Bioelectron ; 192: 113486, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34260968

RESUMEN

Diagnostics of SARS-CoV-2 infection using real-time reverse-transcription polymerase chain reaction (RT-PCR) on nasopharyngeal swabs is now well-established, with saliva-based testing being lately more widely implemented for being more adapted for self-testing approaches. In this study, we introduce a different concept based on exhaled breath condensate (EBC), readily collected by a mask-based sampling device, and detection with an electrochemical biosensor with a modular architecture that enables fast and specific detection and quantification of COVID-19. The face mask forms an exhaled breath vapor containment volume to hold the exhaled breath vapor in proximity to the EBC collector to enable a condensate-forming surface, cooled by a thermal mass, to coalesce the exhaled breath into a 200-500 µL fluid sample in 2 min. EBC RT-PCR for SARS-CoV-2 genes (E, ORF1ab) on samples collected from 7 SARS-CoV-2 positive and 7 SARS-CoV-2 negative patients were performed. The presence of SARS-CoV-2 could be detected in 5 out of 7 SARS-CoV-2 positive patients. Furthermore, the EBC samples were screened on an electrochemical aptamer biosensor, which detects SARS-CoV-2 viral particles down to 10 pfu mL-1 in cultured SARS-CoV-2 suspensions. Using a "turn off" assay via ferrocenemethanol redox mediator, results about the infectivity state of the patient are obtained in 10 min.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Espiración , Humanos , Sistemas de Atención de Punto , ARN Viral , SARS-CoV-2
13.
Arch Immunol Ther Exp (Warsz) ; 69(1): 5, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33677719

RESUMEN

Coronaviruses share conservative spike protein (S) on their enveloped membrane surface, where S1 subunit recognizes and binds the cellular receptor, and the S2 subunit mediates membrane fusion. This similarity raises the question: does coronaviral infection by one create protection to others? Convalescent SARS-CoV-2 (COVID-19) sera were tested for cross reactivity with peptides from Middle East respiratory syndrome coronavirus (MERS-CoV) which shares 74% homology. Our results showed significant cross-reactivity with a peptide of the heptad repeat 2 (HR2) domain of the MERS-CoV spike protein. Sera samples of 47 validated seropositive convalescent COVID-19 patients and 40 sera samples of control patients, collected in pre-COVID time were used to establish cross-bind reactivity with the MERS-CoV peptide. Significantly stronger binding (p < 0.0001) was observed for IgG antibodies in convalescent COVID-19 patients compared to the control group. In ELISA, MERS-CoV peptide helps to discriminate post-COVID-19 populations and non-infected ones by the presence of antibodies in blood samples. This suggests that polyclonal antibodies established during SARS-CoV-2 infection can recognize and probably decrease severity of MERS-CoV and other coronaviral infections. The high homology of the spike protein domain also suggests that the opposite effect can be true: coronaviral infections produce cross-reactive antibodies effective against SARS-CoV-2. The collected data prove that despite the core HR2 region is hidden in the native viral conformation, its exposure during cell entry makes it highly immunogenic. Since inhibitory peptides to this region were previously described, this opens new possibilities in fighting coronaviral infections and developing vaccines effective even after possible viral mutations.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Convalecencia , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Reacciones Cruzadas , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología
14.
ACS Omega ; 6(10): 6528-6536, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33748564

RESUMEN

Since the emergence of SARS-CoV-2 pandemic, clinical laboratories worldwide are overwhelmed with SARS-CoV-2 testing using the current gold standard: real-time reverse-transcription polymerase chain reaction (RT-PCR) assays. The large numbers of suspected cases led to shortages in numerous reagents such as specimen transport and RNA extraction buffers. We try to provide some answers on how strongly preanalytical issues affect RT-PCR results by reviewing the utility of different transport buffer media and virus inactivation procedures and comparing the literature data with our own recent findings. We show that various viral inactivation procedures and transport buffers are available and are less of a bottleneck for PCR-based methods. However, efficient alternative lysis buffers remain more difficult to find, and several fast RT-PCR assays are not compatible with guanidine-containing media, making this aspect more of a challenge in the current crisis. Furthermore, the availability of different SARS-CoV-2-specific RT-PCR kits with different sensitivities makes the definition of a general cutoff level for the cycle threshold (Ct) value challenging. Only a few studies have considered how Ct values relate to viral infectivity and how preanalytical issues might affect viral infectivity and RNA detection. We review the current data on the correlation between Ct values and viral infectivity. The presence of the SARS-CoV-2 viral genome in its own is not sufficient proof of infectivity and caution is needed in evaluation of the infectivity of samples. The correlation between Ct values and viral infectivity revealed an RT-PCR cutoff value of 34 cycles for SARS-CoV-2 infectivity using a laboratory-developed RT-PCR assay targeting the RdRp gene. While ideally each clinical laboratory should perform its own correlation, we believe this perspective article could be a reference point for others, in particular medical doctors and researchers interested in COVID-19 diagnostics, and a first step toward harmonization.

15.
Chem Soc Rev ; 50(3): 2102-2146, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33325917

RESUMEN

Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional ß-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic ß-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.


Asunto(s)
Diabetes Mellitus/prevención & control , Animales , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glucemia/análisis , Diabetes Mellitus/patología , Diabetes Mellitus/terapia , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Terapia Genética , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Insulina/administración & dosificación , Insulina/química , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo
16.
Nanoscale Horiz ; 5(4): 663-670, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32226966

RESUMEN

Transdermal patches have become a widely used approach for painless delivery of drugs. One major current limitation of these systems remains the restricted skin permeation of proteins and peptides as exemplified by insulin, necessitating different considerations for their successful transdermal delivery. We present a novel patch design based on the integration of nano-engineered heating elements on polyimide substrates for electrothermal transdermal therapy. The results reveal that tuning of the electrical resistivity of an array of gold nanoholes, patterned on polyimide, facilitates a fast-responding electrothermal skin patch, while post-coating with reduced graphene oxide offers capabilities for drug encapsulation, like insulin. Application of insulin-loaded patches to the skin of mice resulted in blood glucose regulation within minutes. While demonstrated for insulin, the skin patches might be well adapted to other low and high molecular weight therapeutic drugs, enabling on-demand electrothermal transdermal delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Insulina Regular Humana/administración & dosificación , Parche Transdérmico , Dispositivos Electrónicos Vestibles , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos/instrumentación , Liberación de Fármacos , Oro/química , Grafito/química , Ratones , Nanoporos
17.
Biosens Bioelectron ; 146: 111736, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31586762

RESUMEN

Knowledge on host-pathogen interactions contributes to the development of approaches to alleviate infectious disease. In this work, we developed a surface plasmon resonance (SPR) based method for investigating bacteria/mucins interactions. Furthermore, we investigated adhesion of three pathogens, Aeromonas salmonicida, Aeromonas hydrophila and Vibrio harveyi, to Atlantic salmon mucins isolated from different epithelial sites, using SPR and microtiter-based binding assays. We demonstrated that performing bacterial binding assays to mucins using SPR is feasible and has advantages over microtiter-based binding assays, especially under flow conditions. The fluid flow in the SPR is linear and continuous and SPR enables real-time reading of mucin-bacterial bonds, which provides an in vivo-like setup for analysis of bacterial binding to mucins. The variation between technical replicates was smaller using SPR detection compared to the adenosine 5'-triphosphate (ATP) bioluminescence assay in microtiter plates. Furthermore, we demonstrated that the effect of flow on pathogen-mucin interaction is significant and that bacterial adhesion differ non-linearly with flow rates and depend on the epithelial source of the mucin.


Asunto(s)
Infecciones Bacterianas/veterinaria , Enfermedades de los Peces/microbiología , Proteínas de Peces/metabolismo , Mucinas/metabolismo , Salmo salar/microbiología , Animales , Infecciones Bacterianas/metabolismo , Enfermedades de los Peces/metabolismo , Unión Proteica , Salmo salar/metabolismo , Resonancia por Plasmón de Superficie/métodos
18.
Nanoscale ; 11(34): 15810-15820, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-31270521

RESUMEN

Drug loaded hydrogels have proven to be versatile controlled-release systems. We report here on heat active hydrogel formation by mixing graphene oxide (GO) or carboxyl enriched reduced graphene oxide (rGO-COOH) with metformin hydrochloride, an insulin sensitizer drug currently used as the first line therapy to treat patients with type 2 diabetes. The driving forces of the gelation process between the graphene-based nanomaterial and metformin are hydrogen bonding and electrostatic interactions, weakened at elevated temperature. Using the excellent photothermal properties of the graphene matrixes, we demonstrate that these supramolecular drug reservoirs can be photothermally activated for transdermal metformin delivery. A sustained delivery of metformin was achieved using a laser power of 1 W cm-2. In vitro assessment of the key target Glucose-6 Phosphatase (G6P) gene expression using a human hepatocyte model confirmed that metformin activity was unaffected by photothermal activation. In vivo, metformin was detected in mice plasma at 1 h post-activation of the metformin loaded rGO-COOH gel.


Asunto(s)
Sistemas de Liberación de Medicamentos , Grafito , Hidrogeles , Rayos Infrarrojos , Metformina , Absorción Cutánea , Animales , Línea Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Grafito/química , Grafito/farmacología , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Metformina/química , Metformina/farmacocinética , Metformina/farmacología , Ratones
19.
Biosens Bioelectron ; 89(Pt 1): 606-611, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26852830

RESUMEN

Sensitive and selective detection of cancer biomarkers is vital for the successful diagnosis of early stage cancer and follow-up treatment. Surface Plasmon Resonance (SPR) in combination with different amplification strategies is one of the analytical approaches allowing the screening of protein biomarkers in serum. Here we describe the development of a point-of-care sensor for the detection of folic acid protein (FAP) using graphene-based SPR chips. The exceptional properties of CVD graphene were exploited to construct a highly sensitive and selective SPR chip for folate biomarker sensing in serum. The specific recognition of FAP is based on the interaction between folic acid receptors integrated through π-stacking on the graphene coated SPR chip and the FAP analyte in serum. A simple post-adsorption of human serum:bovine serum albumin (HS:BSA) mixtures onto the folic acid modified sensor resulted in a highly anti-fouling interface, while keeping the sensing capabilities for folate biomarkers. This sensor allowed femtomolar (fM) detection of FAP, a detection limit well adapted and promising for quantitative clinical analysis.


Asunto(s)
Receptores de Folato Anclados a GPI/sangre , Ácido Fólico/química , Grafito/química , Resonancia por Plasmón de Superficie/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Receptores de Folato Anclados a GPI/análisis , Humanos , Límite de Detección , Modelos Moleculares , Sistemas de Atención de Punto , Resonancia por Plasmón de Superficie/instrumentación , Propiedades de Superficie
20.
ACS Appl Mater Interfaces ; 8(14): 9004-13, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27015417

RESUMEN

Nanostructures have been lately identified as an efficient therapeutic strategy to modulate viral attachment and entry. The high concentrations of ligands present on nanostructures can considerably enhance affinities toward biological receptors. We demonstrate here the potential of carbon nanodots (C-dots) surface-functionalized with boronic acid or amine functions to interfere with the entry of herpes simplex virus type 1 (HSV-1). C-dots formed from 4-aminophenylboronic acid hydrochloride (4-AB/C-dots) using a modified hydrothermal carbonization are shown to prevent HSV-1 infection in the nanograms per milliliter concentration range (EC50 = 80 and 145 ng mL(-1) on Vero and A549 cells, respectively), whereas the corresponding C-dots formed from phenylboronic acid (B/C-dots) have no effects even at high concentrations. Some of the presented results also suggest that C-dots are specifically acting on the early stage of virus entry through an interaction with the virus and probably the cells at the same time.


Asunto(s)
Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/efectos de los fármacos , Nanoestructuras/administración & dosificación , Nanotubos de Carbono/química , Internalización del Virus/efectos de los fármacos , Células A549 , Compuestos de Anilina/administración & dosificación , Compuestos de Anilina/química , Animales , Ácidos Borónicos/administración & dosificación , Ácidos Borónicos/química , Células CHO , Chlorocebus aethiops , Cricetinae , Cricetulus , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Nanoestructuras/química , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...