Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 157: 106634, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38945119

RESUMEN

Micro finite-element (µFE) simulations serve as a crucial research tool to assist laboratory experiments in the biomechanical assessment of screw anchorage in bone. However, accurately modelling the interface between bone and screw threads at the microscale poses a significant challenge. Currently, the gold-standard approach involves employing computationally intensive physical contact models to simulate this interface. This study compared nonlinear µFE predictions of deformations, whole-construct stiffness, maximum force and damage patterns of three different computationally efficient simplified interface approaches to the general contact interface in Abaqus Explicit, which was defined as gold-standard and reference model. The µCT images (resolution: 32.8 µm) of two human radii with varying bone volume fractions were utilized and a screw was virtually inserted up to 50% and 100% of the volar-dorsal cortex distance. Materially nonlinear µFE models were generated and loaded in tension, compression and shear. In a first step, the common simplification of using a fully-bonded interface was compared to the general contact interface, revealing overestimations of whole-construct stiffness (19% on average) and maximum force (26% on average), along with inaccurate damage pattern replications. To enhance predictions, two additional simplified interface models were compared: tensionally strained element deletion (TED) and a novel modification of TED (TED-M). TED deletes interface elements strained in tension based on a linear-elastic simulation before the actual simulation. TED-M extends the remaining contact interface of TED by incorporating neighboring elements to the contact area. Both TED and TED-M reduced the errors in whole-construct stiffness and maximum force and improved the replication of the damage distributions in comparison to the fully-bonded approach. TED was better in predicting whole-construct stiffness (average error of 1%), while TED-M showed lowest errors in maximum force (1% on average). In conclusion, both TED and TED-M offer computationally efficient alternatives to physical contact modelling, although the fully-bonded interface may deliver sufficiently accurate predictions for many applications.


Asunto(s)
Tornillos Óseos , Análisis de Elementos Finitos , Humanos , Dinámicas no Lineales , Fenómenos Mecánicos , Fenómenos Biomecánicos , Ensayo de Materiales , Estrés Mecánico , Microtomografía por Rayos X
3.
Med Eng Phys ; 126: 104143, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38621845

RESUMEN

Primary implant stability, which refers to the stability of the implant during the initial healing period is a crucial factor in determining the long-term success of the implant and lays the foundation for secondary implant stability achieved through osseointegration. Factors affecting primary stability include implant design, surgical technique, and patient-specific factors like bone quality and morphology. In vivo, the cyclic nature of anatomical loading puts osteosynthesis locking screws under dynamic loads, which can lead to the formation of micro cracks and defects that slowly degrade the mechanical connection between the bone and screw, thus compromising the initial stability and secondary stability of the implant. Monotonic quasi-static loading used for testing the holding capacity of implanted screws is not well suited to capture this behavior since it cannot capture the progressive deterioration of peri­implant bone at small displacements. In order to address this issue, this study aims to determine a critical point of loss of primary implant stability in osteosynthesis locking screws under cyclic overloading by investigating the evolution of damage, dissipated energy, and permanent deformation. A custom-made test setup was used to test implanted 2.5 mm locking screws under cyclic overloading test. For each loading cycle, maximum forces and displacement were recorded as well as initial and final cycle displacements and used to calculate damage and energy dissipation evolution. The results of this study demonstrate that for axial, shear, and mixed loading significant damage and energy dissipation can be observed at approximately 20 % of the failure force. Additionally, at this load level, permanent deformations on the screw-bone interface were found to be in the range of 50 to 150 mm which promotes osseointegration and secondary implant stability. This research can assist surgeons in making informed preoperative decisions by providing a better understanding of the critical point of loss of primary implant stability, thus improving the long-term success of the implant and overall patient satisfaction.


Asunto(s)
Placas Óseas , Fijación Interna de Fracturas , Humanos , Fenómenos Biomecánicos , Fijación Interna de Fracturas/métodos , Tornillos Óseos , Fenómenos Mecánicos
4.
J Anat ; 245(1): 156-180, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38381116

RESUMEN

Extant great apes are characterized by a wide range of locomotor, postural and manipulative behaviours that each require the limbs to be used in different ways. In addition to external bone morphology, comparative investigation of trabecular bone, which (re-)models to reflect loads incurred during life, can provide novel insights into bone functional adaptation. Here, we use canonical holistic morphometric analysis (cHMA) to analyse the trabecular morphology in the distal femoral epiphysis of Homo sapiens (n = 26), Gorilla gorilla (n = 14), Pan troglodytes (n = 15) and Pongo sp. (n = 9). We test two predictions: (1) that differing locomotor behaviours will be reflected in differing trabecular architecture of the distal femur across Homo, Pan, Gorilla and Pongo; (2) that trabecular architecture will significantly differ between male and female Gorilla due to their different levels of arboreality but not between male and female Pan or Homo based on previous studies of locomotor behaviours. Results indicate that trabecular architecture differs among extant great apes based on their locomotor repertoires. The relative bone volume and degree of anisotropy patterns found reflect habitual use of extended knee postures during bipedalism in Homo, and habitual use of flexed knee posture during terrestrial and arboreal locomotion in Pan and Gorilla. Trabecular architecture in Pongo is consistent with a highly mobile knee joint that may vary in posture from extension to full flexion. Within Gorilla, trabecular architecture suggests a different loading of knee in extension/flexion between females and males, but no sex differences were found in Pan or Homo, supporting our predictions. Inter- and intra-specific variation in trabecular architecture of distal femur provides a comparative context to interpret knee postures and, in turn, locomotor behaviours in fossil hominins.


Asunto(s)
Hueso Esponjoso , Fémur , Hominidae , Animales , Masculino , Femenino , Fémur/anatomía & histología , Hominidae/anatomía & histología , Hominidae/fisiología , Humanos , Hueso Esponjoso/anatomía & histología , Locomoción/fisiología , Gorilla gorilla/anatomía & histología , Gorilla gorilla/fisiología , Pan troglodytes/anatomía & histología , Pan troglodytes/fisiología
5.
J Mech Behav Biomed Mater ; 152: 106318, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38290394

RESUMEN

Trabecular bone structure is a complex microstructure consisting of rods and plates, which poses challenges for its mechanical characterization. Digital image correlation (DIC) offers the possibility to characterize the strain response on the surface of trabecular bone. This study employed DIC equipped with a telecentric lens to investigate the strain state of individual trabeculae within their trabecular structure by assessing the longitudinal strain of the trabeculae at both the middle and near the edges of the trabeculae. Due to the high-resolution of the used DIC system, local surface strain of trabeculae was analyzed too. Lastly, the correlation between longitudinal trabecular strain and the orientation and slenderness of the trabeculae was investigated. The results showed that the strain magnification close to the edge of the trabeculae was higher and reached up to 8-folds the strain along the middle of the trabeculae. On the contrary, no strain magnification was found for most of the trabeculae between the longitudinal trabecular strain along the middle of the trabeculae and the globally applied strain. High-resolution full-field strain maps were obtained on the surface of trabeculae showing heterogeneous strain distribution with increasing load. No significant correlation was found between longitudinal trabecular strain and its orientation or slenderness. These findings and the applied methodology can be used to broaden our understanding of the deformation mechanisms of trabeculae within the trabecular network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA