Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37371811

RESUMEN

Pancreatic cancer is one of the most aggressive forms of cancer and is the seventh leading cause of cancer deaths worldwide. Pancreatic ductal adenocarcinoma (PDAC) accounts for over 90% of pancreatic cancers. Most pancreatic cancers are recalcitrant to radiation, chemotherapy, and immunotherapy, highlighting the urgent need for novel treatment options for this deadly disease. To this end, we screened a library of kinase inhibitors in the PDAC cell lines PANC-1 and BxPC-3 and identified two highly potent molecules: Aurora kinase inhibitor AT 9283 (AT) and EGFR kinase inhibitor WZ 3146 (WZ). Both AT and WZ exhibited a dose-dependent inhibition of viability in both cell lines. Thus, we conducted an in-depth multilevel (cellular, molecular, and proteomic) analysis with AT and WZ in PANC-1 cells, which harbor KRAS mutation and exhibit quasimesenchymal properties representing pancreatic cancer cells as having intrinsic chemoresistance and the potential for differential response to therapy. Elucidation of the molecular mechanism of action of AT and WZ revealed an impact on the programmed cell death pathway with an increase in apoptotic, multicaspase, and caspase 3/7 positive cells. Additionally, the key survival molecule Bcl-2 was impacted. Moreover, cell cycle arrest was observed with both kinase inhibitors. Additionally, an increase in superoxide radicals was observed in the AT-treated group. Importantly, proteomic profiling revealed differentially regulated key entities with multifaceted effects, which could have a deleterious impact on PDAC. These findings suggest potential targets for efficacious treatment, including a possible increase in the efficacy of immunotherapy using PD-L1 antibody due to the upregulation of lactoferrin and radixin. Furthermore, combination therapy outcomes with gemcitabine/platinum drugs may also be more effective due to an increase in the NADH dehydrogenase complex. Notably, protein-protein interaction analysis (STRING) revealed possible enrichment of reactome pathway entities. Additionally, novel therapy options, such as vimentin-antibody--drug conjugates, could be explored. Therefore, future studies with the two kinases as monotherapy/combination therapy are warranted.

2.
Cells ; 12(9)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37174677

RESUMEN

Glioblastoma multiforme (GBM) is a major aggressive primary brain tumor with dismal survival outcome and few therapeutic options. Although Temozolomide (TMZ) is a part of the standard therapy, over time, it can cause DNA damage leading to deleterious effects, necessitating the discovery of drugs with minimal side effects. To this end, we investigated the effect of cinnamaldehyde (CA), a highly purified, single ingredient from cinnamon, on the GBM cell lines U87 and U251 and the neuroglioma cell line H4. On observing similar impact on the viability in all the three cell lines, detailed studies were conducted with CA and its isomer/analog, trans-CA (TCA), and methoxy-CA (MCA) on U87 cells. The compounds exhibited equal potency when assessed at the cellular level in inhibiting U87 cells as well as at the molecular level, resulting in an increase in reactive oxygen species (ROS) and an increase in the apoptotic and multicaspase cell populations. To further characterize the key entities, protein profiling was performed with CA. The studies revealed differential regulation of entities that could be key to glioblastoma cell circuits such as downregulation of pyruvate kinase-PKM2, the key enzyme of the glycolytic pathway that is central to the Warburg effect. This allows for monitoring the levels of PKM2 after therapy using recently developed noninvasive technology employing PET [18F] DASA-23. Additionally, the observation of downregulation of phosphomevalonate kinase is significant as the brain tumor initiating cells (BTIC) are maintained by the metabolism occurring via the mevalonate pathway. Results from the current study, if translated in vivo, could provide additional efficacious treatment options for glioblastoma with minimal side effects.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/metabolismo , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Apoptosis , Línea Celular Tumoral
3.
Genes (Basel) ; 13(5)2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35627200

RESUMEN

Colorectal cancer is the third most frequently encountered cancer worldwide. While current chemotherapeutics help to manage the disease to some extent, they have eluded achieving complete remission and are limited by their severe side effects. This warrants exploration of novel agents that are efficacious with anticipation of minimal adverse effects. In the current study, casticin, a tetramethoxyflavone, was tested for its ability to inhibit the viability of three human colorectal cancer cells: adenocarcinoma (DLD-1, Caco-2 cell lines) and human colorectal carcinoma cells (HCT116 cell line). Casticin showed potent inhibition of viability of DLD-1 and HCT116 cells. Clonogenic assay performed in DLD-1 cells revealed that casticin impeded the colony-forming efficiency of the cells, suggesting its impact on the proliferation of these cells. Further, a sustained effect of the inhibitory action upon withdrawal of the treatment was observed. Elucidation of the mechanism of action revealed that casticin impacted the extrinsic programmed cell death pathway, leading to an increase in apoptotic cells. Further, Bcl-2, the key moiety of cell survival, was affected. Notably, a significant number of cells were arrested in the G2/M phase of the cell cycle in DLD-1 cells. Due to the multifaceted action of casticin, we envision that treatment with casticin could provide an efficacious treatment option for colorectal adenocarcinomas with minimal side effects.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Apoptosis , Células CACO-2 , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Flavonoides , Humanos
4.
Biomedicines ; 10(3)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35327385

RESUMEN

The prevalence of colorectal cancer has increased world-wide with high rates of mortality and morbidity. In the absence of efficacious drugs to treat this neoplasia, there is an imminent need to discover molecules with multifaceted effects. To this end, we opted to study the effect of steroidal saponins such as Polyphyllins. We performed anticancer activity studies with three analogs of Polyphyllins: Polyphyllin D (PD), Polyphyllin II (PII) and Polyphyllin G (PG). Here we show the potent effect of PD, PII (IC50 of 0.5-1 µM) and PG (IC50 of 3 µM) in inhibiting the viability of colorectal adenocarcinoma cells (DLD-1) and colorectal carcinoma cells (HCT116). PD and PII also showed inhibition of cell proliferation and sustained response upon withdrawal of the compounds when assessed by clonogenic assays in both the cell lines. Elucidation of the molecular mode of action revealed impact on the programmed cell death pathway. Additionally, proteomic profiling of DLD-1 revealed pivotal proteins differentially regulated by PD and PII, including a downregulated peroxiredoxin-1 which is considered as one of the novel targets to combat colorectal cancers and an upregulated elongation factor 2 (EF2), one of the key molecules considered as a tumor associated antigen (TAA) in colon cancer. Entities of cell metabolic pathways including downregulation of the key enzyme Phosphoglycerate kinase 1 of the glycolytic pathway was also observed. Importantly, the fold changes per se of the key components has led to the loss of viability of the colorectal cancer cells. We envision that the multifaceted function of PD and PII against the proliferation of colorectal carcinoma cells could have potential for novel treatments such as chemoimmunotherapy for colorectal adenocarcinomas. Future studies to develop these compounds as potent anti-colorectal cancer agents are warranted.

5.
Cancer Inform ; 20: 11769351211065979, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924752

RESUMEN

BACKGROUND: Colorectal cancer is the third largest cause of cancer-related mortality worldwide. Although current treatments with chemotherapeutics have allowed for management of colorectal cancer, additional novel treatments are essential. Intervening with the metabolic reprogramming observed in cancers called "Warburg Effect," is one of the novel strategies considered to combat cancers. In the metabolic reprogramming pathway, pyruvate dehydrogenase kinase (PDK1) plays a pivotal role. Identification and characterization of a PDK1 inhibitor is of paramount importance. Further, for efficacious treatment of colorectal cancers, combinatorial regimens are essential. To this end, we opted to identify a PDK1 inhibitor using computational structure-based drug design FINDSITEcomb and perform combinatorial studies with 5-FU for efficacious treatment of colorectal cancers. METHODS: Using computational structure-based drug design FINDSITEcomb, stearic acid (SA) was identified as a possible PDK1 inhibitor. Elucidation of the mechanism of action of SA was performed using flow cytometry, clonogenic assays. RESULTS: When the growth inhibitory potential of SA was tested on colorectal adenocarcinoma (DLD-1) cells, a 50% inhibitory concentration (IC50) of 60 µM was recorded. Moreover, SA inhibited the proliferation potential of DLD-1 cells as shown by the clonogenic assay and there was a sustained response even after withdrawal of the compound. Elucidation of the mechanism of action revealed, that the inhibitory effect of SA was through the programmed cell death pathway. There was increase in the number of apoptotic and multicaspase positive cells. SA also impacted the levels of the cell survival protein Bcl-2. With the aim of achieving improved treatment for colorectal cancer, we opted to combine 5-fluorouracil (5-FU), the currently used drug in the clinic, with SA. Combining SA with 5-FU, revealed a synergistic effect in which the IC50 of 5-FU decreased from 25 to 6 µM upon combination with 60 µM SA. Further, SA did not inhibit non-tumorigenic NIH-3T3 proliferation. CONCLUSIONS: We envision that this significant decrease in the IC50 of 5-FU could translate into less side effects of 5-FU and increase the efficacy of the treatment due to the multifaceted action of SA. The data generated from the current studies on the inhibition of colorectal adenocarcinoma by SA discovered by the use of the computational program as well as synergistic action with 5-FU should open up novel therapeutic options for the management of colorectal adenocarcinomas.

6.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830970

RESUMEN

Deregulation of signaling pathways due to mutations sets the cell on a path to neoplasia. Therefore, recent reports of increased mutations observed in esophageal tissue reflects the enhanced risk of tumor formation. In fact, adenocarcinoma of the esophagus has been on the rise lately. Increase in mortality due to a paucity of efficacious drugs for this cancer prompted us to discover molecular signatures to combat this malady. To this end, we chose resveratrol-a polyphenol with anticancer property-and studied its impact on three esophageal adenocarcinoma cell lines (OE33, OE19 and FLO-1) by multilevel profiling. Here, we show the impact of resveratrol on the viability of the three adenocarcinoma esophageal cell systems studied, at the cellular level. Furthermore, an analysis at the molecular level revealed that the action was through the programmed cell death pathway, resulting in an increase in apoptotic and caspase-positive cells. The impact on reactive oxygen species (ROS) and a decrease in Bcl2 levels were also observed. Moreover, proteomic profiling highlighted pivotal differentially regulated signaling molecules. The phenotypic effect observed in resveratrol-treated esophageal cells could be due to the stoichiometry per se of the fold changes observed in entities of key signaling pathways. Notably, the downregulation of Ku80 and other pivotal entities by resveratrol could be harnessed for chemo-radiation therapy to prevent DNA break repair after radiation therapy. Additionally, multilevel profiling has shed light on molecular and immune-modulatory signatures with implications for discovering novel treatments, including chemo-immunotherapy, for esophageal adenocarcinomas which are known to be aggressive cancers.

7.
Cancer Treat Res Commun ; 26: 100271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33341453

RESUMEN

Worldwide prevalence of esophageal adenocarcinomas with high rates of mortality coupled with increased mutations in esophageal cells warrants investigation to understand deregulation of cell signaling pathways leading to cancer. To this end, the current study was undertaken to unravel the cell death signatures using the model human esophageal adenocarcinoma cell line-OE33. The strategy involved targeting the key epigenetic modulator SIRT1, a histone deacetylase by a small molecule inhibitor - sirtinol. Sirtinol induced a dose-dependent inhibition of cell viability under both normoxic and hypoxic conditions with long term impact on proliferation as shown by clonogenic assays. Signature apoptotic signaling pathways including caspase activation and decreased Bcl-2 were observed. Proteomic analysis highlighted an array of entities affected including molecules involved in replication, transcription, protein synthesis, cell division control, stress-related proteins, spliceosome components, protein processing and cell detoxification/degradation systems. Importantly, the stoichiometry of the fold changes of the affected proteins per se could govern the cell death phenotype by sirtinol. Sirtinol could also potentially curb resistant and recurrent tumors that reside in hypoxic environments. Overall, in addition to unraveling the cellular, molecular and proteomics basis of SIRT1 inhibition, the findings open up avenues for designing novel strategies against esophageal adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Benzamidas/farmacología , Neoplasias Esofágicas/genética , Naftoles/farmacología , Sirtuina 1/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzamidas/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Naftoles/uso terapéutico , Proteómica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirtuina 1/metabolismo
8.
Prostate Cancer ; 2019: 4520645, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31263600

RESUMEN

Prostate cancer is a major cause of cancer-related mortality in men. Even though current therapeutic management has contributed to reducing mortality, additional intervention strategies are warranted to further improve the outcomes. To this end, we have investigated the efficacy of dicaffeoylquinic acids, ingredients in Yerba Mate (Ilex paraguariensis), an evergreen cultivated in South America, the leaves of which are used to prepare a tea/coffee-like drink. Of the various analogs tested, 4,5-dicaffeoylquinic acid (4,5-diCQA) was the most active molecule against DU-145 prostate cancer cells with a 50% inhibitory concentration (IC50) of 5 µM. 4,5-diCQA was active both under normoxic and hypoxic conditions. The effect of 72-hour treatment on DU-145 cells persisted for an extended time period as assessed by clonogenic assay. Mechanistic studies revealed that the toxic effect was not due to induction of programmed cell death but through cell cycle arrest at S phase. Additionally, 4,5-diCQA did not impact PI3K/MAPK signaling pathway nor did it affect the depolarization of the mitochondrial membrane. 4,5-diCQA-induced accumulation of cells in the S-phase also seems to negatively impact Bcl-2 expression. 4,5-diCQA also exhibited inhibitory activity on LNCaP and PC-3 prostate cancer cells suggesting that it has therapeutic potential on a broad range of prostate cancers. Taken together, the novel inhibitory activity and mechanism of action of 4,5-diCQA opens up potential therapeutic options for using this molecule as monotherapy as well as in combinatorial therapies for the clinical management of prostate cancer.

9.
Adv Healthc Mater ; 8(4): e1801076, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30537355

RESUMEN

Brain tumors remain a great clinical challenge, in part due to their capacity to invade into eloquent, inoperable regions of the brain. In contrast, inflammation in the central nervous system (CNS) due to injuries activates microglia and astrocytes culminating in an astroglial scar that typically "walls-off" the injury site. Here, the hypothesis is tested that targeting peritumoral cells surrounding tumors to activate them via an inflammatory stimulus that recapitulates the sequelae of a traumatic CNS injury, could generate an environment that would wall-off and contain invasive tumors in the brain. Gold nanoparticles coated with inflammatory polypeptides to target stromal cells in close vicinity to glioblastoma (GBM) tumors, in order to activate these cells and stimulate stromal CNS inflammation, are engineered. It is reported that this approach significantly contains tumors in rodent models of GBM relative to control treatments (reduction in tumor volume by over 300% in comparison to controls), by the activation of the innate and adaptive immune response, and by triggering pathways related to cell clustering. Overall, this report outlines an approach to contain invasive tumors that can complement adjuvant interventions for invasive GBM such as radiation and chemotherapy.


Asunto(s)
Inmunidad Adaptativa , Astrocitos/inmunología , Neoplasias Encefálicas/inmunología , Glioblastoma/inmunología , Inmunidad Innata , Microglía/inmunología , Animales , Astrocitos/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Ratones , Microglía/patología , Ratas , Ratas Desnudas
10.
J Pharmacol Exp Ther ; 366(1): 66-74, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695410

RESUMEN

In this study we investigated nanoliposome as an approach to tailoring the pharmacology of cerivastatin as a disease-modifying drug for pulmonary arterial hypertension (PAH). Cerivastatin encapsulated liposomes with an average diameter of 98 ± 27 nm were generated by a thin film and freeze-thaw process. The nanoliposomes demonstrated sustained drug-release kinetics in vitro and inhibited proliferation of pulmonary artery (PA) smooth muscle cells with significantly less cellular cytotoxicity as compared with free cerivastatin. When delivered by inhalation to a rat model of monocrotaline-induced PAH, cerivastatin significantly reduced PA pressure from 55.13 ± 9.82 to 35.56 ± 6.59 mm Hg (P < 0.001) and diminished PA wall thickening. Echocardiography showed that cerivastatin significantly reduced right ventricle thickening (monocrotaline: 0.34 ± 0.02 cm vs. cerivastatin: 0.26 ± 0.02 cm; P < 0.001) and increased PA acceleration time (monocrotaline: 13.98 ± 1.14 milliseconds vs. cerivastatin: 21.07 ± 2.80 milliseconds; P < 0.001). Nanoliposomal cerivastatin was equally effective or slightly better than cerivastatin in reducing PA pressure (monocrotaline: 67.06 ± 13.64 mm Hg; cerivastatin: 46.31 ± 7.64 mm Hg vs. liposomal cerivastatin: 37.32 ± 9.50 mm Hg) and improving parameters of right ventricular function as measured by increasing PA acceleration time (monocrotaline: 24.68 ± 3.92 milliseconds; cerivastatin: 32.59 ± 6.10 milliseconds vs. liposomal cerivastatin: 34.96 ± 7.51 milliseconds). More importantly, the rate and magnitude of toxic cerivastatin metabolite lactone generation from the intratracheally administered nanoliposomes was significantly lower as compared with intravenously administered free cerivastatin. These studies show that nanoliposome encapsulation improved in vitro and in vivo pharmacologic and safety profile of cerivastatin and may represent a safer approach as a disease-modifying therapy for PAH.


Asunto(s)
Hipertensión Pulmonar/tratamiento farmacológico , Liposomas/química , Nanoestructuras/química , Piridinas/química , Piridinas/farmacología , Animales , Humanos , Hipertensión Pulmonar/metabolismo , Lactonas/metabolismo , Piridinas/efectos adversos , Piridinas/uso terapéutico , Ratas , Seguridad
11.
Brain ; 141(4): 1017-1027, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29444239

RESUMEN

See Moon and Bradbury (doi:10.1093/brain/awy067) for a scientific commentary on this article.Many hundreds of thousands of people around the world are living with the long-term consequences of spinal cord injury and they need effective new therapies. Laboratory research in experimental animals has identified a large number of potentially translatable interventions but transition to the clinic is not straightforward. Further evidence of efficacy in more clinically-relevant lesions is required to gain sufficient confidence to commence human clinical trials. Of the many therapeutic candidates currently available, intraspinally applied chondroitinase ABC has particularly well documented efficacy in experimental animals. In this study we measured the effects of this intervention in a double-blinded randomized controlled trial in a cohort of dogs with naturally-occurring severe chronic spinal cord injuries that model the condition in humans. First, we collected baseline data on a series of outcomes: forelimb-hindlimb coordination (the prespecified primary outcome measure), skin sensitivity along the back, somatosensory evoked and transcranial magnetic motor evoked potentials and cystometry in 60 dogs with thoracolumbar lesions. Dogs were then randomized 1:1 to receive intraspinal injections of heat-stabilized, lipid microtube-embedded chondroitinase ABC or sham injections consisting of needle puncture of the skin. Outcome data were measured at 1, 3 and 6 months after intervention; skin sensitivity was also measured 24 h after injection (or sham). Forelimb-hindlimb coordination was affected by neither time nor chondroitinase treatment alone but there was a significant interaction between these variables such that coordination between forelimb and hindlimb stepping improved during the 6-month follow-up period in the chondroitinase-treated animals by a mean of 23%, but did not change in controls. Three dogs (10%) in the chondroitinase group also recovered the ability to ambulate without assistance. Sensitivity of the dorsal skin increased at 24 h after intervention in both groups but subsequently decreased to normal levels. Cystometry identified a non-significant improvement of bladder compliance at 1 month in the chondroitinase-injected dogs but this did not persist. There were no overall differences between groups in detection of sensory evoked potentials. Our results strongly support a beneficial effect of intraspinal injection of chondroitinase ABC on spinal cord function in this highly clinically-relevant model of chronic severe spinal cord injury. There was no evidence of long-term adverse effects associated with this intervention. We therefore conclude that this study provides strong evidence in support of initiation of clinical trials of chondroitinase ABC in humans with chronic spinal cord injury.


Asunto(s)
Condroitina ABC Liasa/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/veterinaria , Animales , Modelos Animales de Enfermedad , Perros , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Prueba de Esfuerzo , Femenino , Inyecciones Espinales , Locomoción/efectos de los fármacos , Masculino , Dimensión del Dolor/efectos de los fármacos , Piel/inervación , Piel/patología , Traumatismos de la Médula Espinal/complicaciones , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Enfermedades de la Vejiga Urinaria/tratamiento farmacológico , Enfermedades de la Vejiga Urinaria/etiología
12.
Biomaterials ; 63: 158-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26102992

RESUMEN

Various stem cells and their progeny have been used therapeutically for vascular regeneration. One of the major hurdles for cell-based therapy is low cell retention in vivo, and to improve cell survival several biomaterials have been used to encapsulate cells before transplantation. Vascular regeneration involves new blood vessel formation which consists of two processes, vasculogenesis and angiogenesis. While embryonic stem cell (ESC)-derived endothelial cells (ESC-ECs) have clearer vasculogenic potency, adult cells exert their effects mainly through paracrine angiogenic activities. While these two cells have seemingly complementary advantages, there have not been any studies to date combining these two cell types for vascular regeneration. We have developed a novel chitosan-based hydrogel construct that encapsulates both CD31-expressing BM-mononuclear cells (BM-CD31(+) cells) and ESC-ECs, and is loaded with VEGF-releasing microtubes. This cell construct showed high cell survival and minimal cytotoxicity in vitro. When implanted into a mouse model of hindlimb ischemia, it induced robust cell retention, neovascularization through vasculogenesis and angiogenesis, and efficiently induced recovery of blood flow in ischemic hindlimbs. This chitosan-based hydrogel encapsulating mixed adult and embryonic cell derivatives and containing VEGF can serve as a novel platform for treating various cardiovascular diseases.


Asunto(s)
Quitosano/química , Células Madre Embrionarias/trasplante , Células Endoteliales/trasplante , Miembro Posterior/irrigación sanguínea , Isquemia/terapia , Andamios del Tejido/química , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Células Endoteliales/citología , Miembro Posterior/patología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Isquemia/patología , Masculino , Ratones , Neovascularización Fisiológica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Factor A de Crecimiento Endotelial Vascular/farmacología
13.
Drug Deliv Transl Res ; 5(2): 116-24, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25787737

RESUMEN

Aggressive surgical resection is the primary therapy for glioma. However, aggressive resection may compromise functional healthy brain tissue. Currently, there are no objective cues for surgeons to distinguish healthy tissue from tumor and determine tumor borders; surgeons skillfully rely on subjective means such as tactile feedback. This often results in incomplete resection and recurrence. The objective of the present study was to design, develop, and evaluate, in vitro and in vivo, a nanoencapsulated visible dye for intraoperative, visual delineation of tumor margins in an invasive tumor model. Liposomal nanocarriers containing Evans blue dye (nano-EB) were developed, characterized, and tested for safety in vitro and in vivo. 3RT1RT2A glioma cells were implanted into brains of Fischer 344 rats. Nano-EB or EB solution was injected via tail vein into tumor-bearing animals. To assess tumor staining, tissue samples were analyzed visibly and using fluorescence microscopy. Area, perimeter ratios, and Manders overlap coefficients were calculated to quantify extent of staining. Nano-EB clearly marked tumor margins in the invasive tumor model. Area ratio of nano-EB staining to tumor was 0.89 ± 0.05, perimeter ratio was 0.94 ± 0.04, Manders R was 0.51 ± 0.08, and M1 was 0.97 ± 0.06. Microscopic tumor border inspection under high magnification verified that nano-EB did not stain healthy tissue. Nano-EB clearly aids in distinguishing tumor tissue from healthy tissue in an invasive tumor model, while injection of unencapsulated EB results in false identification of healthy tissue as tumor due to diffusion of dye from the tumor into healthy tissue.


Asunto(s)
Colorantes/administración & dosificación , Azul de Evans/administración & dosificación , Nanopartículas/administración & dosificación , Animales , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Glioma/metabolismo , Liposomas , Masculino , Ratas , Ratas Endogámicas F344
14.
ACS Nano ; 9(2): 1492-505, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25587936

RESUMEN

Spinal cord injury (SCI) can lead to permanent motor and sensory deficits. Following the initial traumatic insult, secondary injury mechanisms characterized by persistent heightened inflammation are initiated and lead to continued and pervasive cell death and tissue damage. Anti-inflammatory drugs such as methylprednisolone (MP) used clinically have ambiguous benefits with debilitating side effects. Typically, these drugs are administered systemically at high doses, resulting in toxicity and paradoxically increased inflammation. Furthermore, these drugs have a small time window postinjury (few hours) during which they need to be infused to be effective. As an alternative to MP, we investigated the effect of a small molecule inhibitor (Chicago sky blue, CSB) of macrophage migration inhibitory factor (MIF) for treating SCI. The pleiotropic cytokine MIF is known to contribute to upregulation of several pro-inflammatory cytokines in various disease and injury states. In vitro, CSB administration alleviated endotoxin-mediated inflammation in primary microglia and macrophages. Nanocarriers such as liposomes can potentially alleviate systemic side effects of high-dose therapy by enabling site-specific drug delivery to the spinal cord. However, the therapeutic window of 100 nm scale nanoparticle localization to the spinal cord after contusion injury is not fully known. Thus, we first investigated the ability of nanocarriers of different sizes to localize to the injured spinal cord up to 2 weeks postinjury. Results from the study showed that nanocarriers as large as 200 nm in diameter could extravasate into the injured spinal cord up to 96 h postinjury. We then formulated nanocarriers (liposomes) encapsulating CSB and administered them intravenously 48 h postinjury, within the previously determined 96 h therapeutic window. In vivo, in this clinically relevant contusion injury model in rats, CSB administration led to preservation of vascular and white matter integrity, improved wound healing, and an increase in levels of arginase and other transcripts indicative of a resolution phase of wound healing. This study demonstrates the potential of MIF inhibition in SCI and the utility of nanocarrier-mediated drug delivery selectively to the injured cord.


Asunto(s)
Portadores de Fármacos/química , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Nanoestructuras/química , Traumatismos de la Médula Espinal/complicaciones , Azul de Tripano/química , Azul de Tripano/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Liposomas , Masculino , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Células RAW 264.7 , Ratas , Factores de Tiempo
15.
IEEE Trans Biomed Eng ; 61(5): 1474-81, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24759280

RESUMEN

Stem cells are a promising source for cell replacement therapy for several degenerative conditions. However, a number of limitations such as low cell survival, uncontrolled and/or low differentiation, induction of host immune response, and the risk of teratoma formation remain as challenges. In this review, we explore the utility of hydrogels as carriers for stem cell delivery and their potential to overcome some of the current limitations in stem cell therapy. We focus on in situ gelling hydrogels, and also discuss other strategies to modulate the immune response to promote controlled stem cell differentiation. Immunomodulatory hydrogels and gels designed to promote cell survival and integration into the host site will likely have a significant effect on enhancing the efficacy of stem cell transplantation as a therapy for debilitating degenerative diseases.


Asunto(s)
Hidrogeles , Trasplante de Células Madre , Animales , Diferenciación Celular , Humanos , Ratones
16.
Nat Mater ; 13(3): 308-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24531400

RESUMEN

Glioblastoma multiforme is an aggressive, invasive brain tumour with a poor survival rate. Available treatments are ineffective and some tumours remain inoperable because of their size or location. The tumours are known to invade and migrate along white matter tracts and blood vessels. Here, we exploit this characteristic of glioblastoma multiforme by engineering aligned polycaprolactone (PCL)-based nanofibres for tumour cells to invade and, hence, guide cells away from the primary tumour site to an extracortical location. This extracortial sink is a cyclopamine drug-conjugated, collagen-based hydrogel. When aligned PCL-nanofibre films in a PCL/polyurethane carrier conduit were inserted in the vicinity of an intracortical human U87MG glioblastoma xenograft, a significant number of human glioblastoma cells migrated along the aligned nanofibre films and underwent apoptosis in the extracortical hydrogel. Tumour volume in the brain was significantly lower following insertion of aligned nanofibre implants compared with the application of smooth fibres or no implants.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Hidrogeles , Nanofibras , Polímeros/química , Xenoinjertos , Humanos
17.
Cells Tissues Organs ; 200(1): 69-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25766202

RESUMEN

Recent developments in the field of peripheral nerve imaging extend the capabilities of imaging modalities to assist in the diagnosis and treatment of patients with peripheral nerve maladies. Methods such as magnetic resonance imaging (MRI) and its derivative diffusion tensor imaging (DTI), ultrasound (US) and positron emission tomography (PET) are capable of assessing nerve structure and function following injury and relating the state of the nerve to electrophysiological and histological analysis. Of the imaging methods surveyed here, each offered unique and interesting advantages related to the field. MRI offered the opportunity to visualize immune activity on the injured nerve throughout the course of the regeneration process, and DTI offered numerical characterization of the injury and the ability to develop statistical bases for diagnosing injury. US extends imaging to the treatment phase by enabling more precise analgesic applications following surgery, and PET represents a novel method of assessing nerve injury through analysis of relative metabolism rates in injured and healthy tissue. Exciting new possibilities to enhance and extend the abilities of imaging methods are also discussed, including innovative contrast agents, some of which enable multimodal imaging approaches and present opportunities for treatment application.


Asunto(s)
Diagnóstico por Imagen , Nervios Periféricos/anatomía & histología , Animales , Medios de Contraste , Humanos , Imagen Molecular , Nervios Periféricos/diagnóstico por imagen , Cintigrafía , Ultrasonografía
18.
Oncol Lett ; 1(2): 339-343, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22966305

RESUMEN

Breast tumors are the second major cause of cancer-related death in women worldwide. These tumors are aggressive, leading to metastatic cancers that are heterogeneous in nature, with numerous subtypes. The basal-like tumor subtype invariably shows unfavorable prognosis and is often characterized by the lack of estrogen, progesterone and HER2 receptors. These cancer types do not respond to the current targeted therapies. Therefore, the need for the discovery of novel diagnostic markers/therapeutic targets is of paramount importance. Immortalization of breast tumor cells leading to advanced stage cancer is one of the pivotal steps in breast cancer and telomeres/telomerase play a critical role in this process. Using single telomere length analysis, cell lines with a basal-like phenotype encompassing immortalized/non-tumorigenic MCF10A and invasive/metastatic MCF10CA1 along with the MCF-7 cell line were examined for the presence of a unique class of telomere t-stumps. Telomerase activity, protein levels of telomerase and bulk telomere lengths were assessed in the above-mentioned cell lines. This is the first study describing the existence of a distinct class of extremely short telomeres termed 't-stumps' in breast cancer cell lines. The cell lines MCF10A and MCF10CA1 showed distinct telomeric bands in the molecular size range of 100-1,000 bp, whereas the MCF-7 cell line showed very low levels of t-stumps. Of note is that only the highly invasive/metastatic cancer cell line MCF10CA1 exhibited an abundance of a cluster of t-stumps with a size distribution range of 500-700 bp. These unique t-stumps observed in the advanced breast cancer cell line may serve as a novel diagnostic marker and also form a key molecular target for novel anticancer therapy.

19.
Analyst ; 134(7): 1483-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19562219

RESUMEN

A fluorescence assay was developed to quantify oligonucleotides (ODNs) encapsulated in bovine serum albumin (BSA) microspheres using antisense to Nuclear Factor-kappaB (NF-kappaB) as a model ODN and employing Oligreen as the fluorescent dye. Methodologies were optimized for the suspension of the microspheres as well as release of the encapsulated ODN using protease digestion. This was followed by the detection and quantitation of the ODN using the Oligreen dye. The Oligreen fluorescence assay gave a concentration-dependent fluorescent interaction with the ODN. Further characterization of the ODN with respect to their structural integrity in non-irradiated and gamma-irradiated antisense encapsulated in BSA microspheres was performed using HPLC, infrared spectroscopy and polyacrylamide gel electrophoresis. Results showed no structural modification of antisense in the BSA microspheres as determined by HPLC retention times for the pure antisense and microsphere-encapsulated ODN. The migration pattern of the antisense in polyacrylamide gels confirmed the absence of significant alterations as a result of the encapsulation process or due to gamma-irradiation. The infrared spectra of non-irradiated and gamma-irradiated antisense to NF-kappaB microspheres also displayed peaks characteristic of the functional groups. The fluorescence assay could also detect NF-kappaB antisense in the serum of rats administered with encapsulated antisense by oral and intravenous routes. This methodology should be valuable for the analysis of BSA-encapsulated antisense ODN and for pharmacokinetic studies during antisense therapy.


Asunto(s)
Portadores de Fármacos/química , Microesferas , Oligonucleótidos/análisis , Oligonucleótidos/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Electroforesis en Gel de Poliacrilamida , Rayos gamma , FN-kappa B/genética , Oligonucleótidos/sangre , Oligonucleótidos Antisentido/sangre , Oligonucleótidos Antisentido/química , Ratas , Ratas Sprague-Dawley , Espectrometría de Fluorescencia
20.
J Microencapsul ; 26(5): 411-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18821261

RESUMEN

Catalase in albumin microspheres were formulated for intravenous administration to antagonize the effects of over-production of reactive oxygenated species (ROS) such as hydrogen peroxide (H(2)O(2)) in septic shock. The aim was to increase effective half-life of catalase and take advantage of the phagocytic uptake of the encapsulated catalase by the vascular endothelium. Catalase microspheres were prepared by spray-drying. The microspheres were evaluated for particle size, particle shape and surface morphology by scanning electron microscopy (SEM), drug encapsulation efficiency, chemical stability, thermal stability and in vitro drug release characteristics. The microspheres had a mean particle size of 4.7 +/- 2 microm, optimal for phagocytic uptake, as demonstrated by Makino et al. SEM revealed that microspheres were spherical with smooth surface morphology. An encapsulation efficiency of 91.5 +/- 3% was achieved and the encapsulated catalase was chemically and thermally stable. Application of in vitro drug release data to the Higuchi kinetic equation indicated matrix diffusion-controlled catalase release from albumin microspheres.


Asunto(s)
Albúminas , Catalasa , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos , Microesferas , Catalasa/química , Catalasa/metabolismo , Línea Celular , Difusión , Células Endoteliales/enzimología , Endotelio Vascular/citología , Humanos , Tamaño de la Partícula , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...