Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 40: 176-185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245343

RESUMEN

Space agencies are developing Bioregenerative Life Support Systems (BLSS) in view of upcoming long-term crewed space missions. Most of these BLSS plan to include various crops to produce different types of foods, clean water, and O2 while capturing CO2 from the atmosphere. However, growing these plants will require the appropriate addition of nutrients in forms that are available. As shipping fertilizers from Earth would be too costly, it will be necessary to use waste-derived nutrients. Using the example of the MELiSSA (Micro-Ecological Life Support System Alternative) loop of the European Space Agency, this paper reviews what should be considered so that nutrients recycled from waste streams could be used by plants grown in a hydroponic system. Whereas substantial research has been conducted on nitrogen and phosphorus recovery from human urine, much work remains to be done on recovering nutrients from other liquid and solid organic waste. It is essential to continue to study ways to efficiently remove sodium and chloride from urine and other organic waste to prevent the spread of these elements to the rest of the MELiSSA loop. A full nitrogen balance at habitat level will have to be achieved; on one hand, sufficient N2 will be needed to maintain atmospheric pressure at a proper level and on the other, enough mineral nitrogen will have to be provided to the plants to ensure biomass production. From a plant nutrition point of view, we will need to evaluate whether the flux of nutrients reaching the hydroponic system will enable the production of nutrient solutions able to sustain a wide variety of crops. We will also have to assess the nutrient use efficiency of these crops and how that efficiency might be increased. Techniques and sensors will have to be developed to grow the plants, considering low levels or the total absence of gravity, the limited volume available to plant growth systems, variations in plant needs, the recycling of nutrient solutions, and eventually the ultimate disposal of waste that can no longer be used.


Asunto(s)
Sistemas Ecológicos Cerrados , Humanos , Sistemas de Manutención de la Vida , Nutrientes , Productos Agrícolas , Nitrógeno
2.
Life Sci Space Res (Amst) ; 25: 53-65, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32414493

RESUMEN

The Arthrospira-B experiment is the first experiment in space ever allowing the online measurements of both oxygen production rate and growth rate of Limnospira indica PCC8005 in batch photobioreactors running on-board ISS. Four bioreactors were integrated in the ISS Biolab facility. Each reactor was composed of two chambers (gas and liquid) separated by a PTFE membrane and was run in batch conditions. Oxygen production was monitored by online measurement of the total pressure increase in the gas chamber. The experiments are composed of several successive batch cultures for each reactor, performed in parallel on ISS and on ground. In this work, a model for the growth of the cyanobacterium Limnospira indica PCC8005 (also known as Arthrospira or spirulina) in these space membrane photobioreactors was proposed and the simulation results obtained are compared to the experimental results gathered in space and on ground. The photobioreactor model was based on a light transfer limitation model, already used to describe and predict the growth and oxygen production in small to large scale ground photobioreactors. It was completed by a model for pH prediction in the liquid phase allowing assessment of the pH increase associated to the bicarbonate consumption for the biomass growth. A membrane gas-liquid transfer model is used to predict the gas pressure increase in the gas chamber. Substrate limitation is considered in the biological model. A quite satisfactory fit was achieved between experimental and simulation results when a suitable mixing of the liquid phase was maintained. The data showed that microgravity has no first order effect on the oxygen production rate of Limnospira indica PCC8005 in a photobioreactor operating in space in zero gravity conditions.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Oxígeno/metabolismo , Fotobiorreactores , Cianobacterias/metabolismo , Concentración de Iones de Hidrógeno , Sistemas de Manutención de la Vida/instrumentación , Luz , Modelos Teóricos , Nave Espacial , Ingravidez
3.
Sci Rep ; 8(1): 13783, 2018 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30214003

RESUMEN

Long-term human Space missions depend on regenerative life support systems (RLSS) to produce food, water and oxygen from waste and metabolic products. Microbial biotechnology is efficient for nitrogen conversion, with nitrate or nitrogen gas as desirable products. A prerequisite to bioreactor operation in Space is the feasibility to reactivate cells exposed to microgravity and radiation. In this study, microorganisms capable of essential nitrogen cycle conversions were sent on a 44-days FOTON-M4 flight to Low Earth Orbit (LEO) and exposed to 10-3-10-4 g (gravitational constant) and 687 ± 170 µGy (Gray) d-1 (20 ± 4 °C), about the double of the radiation prevailing in the International Space Station (ISS). After return to Earth, axenic cultures, defined and reactor communities of ureolytic bacteria, ammonia oxidizing archaea and bacteria, nitrite oxidizing bacteria, denitrifiers and anammox bacteria could all be reactivated. Space exposure generally yielded similar or even higher nitrogen conversion rates as terrestrial preservation at a similar temperature, while terrestrial storage at 4 °C mostly resulted in the highest rates. Refrigerated Space exposure is proposed as a strategy to maximize the reactivation potential. For the first time, the combined potential of ureolysis, nitritation, nitratation, denitrification (nitrate reducing activity) and anammox is demonstrated as key enabler for resource recovery in human Space exploration.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Ciclo del Nitrógeno/fisiología , Vuelo Espacial , Ingravidez , Amoníaco/metabolismo , Archaea/efectos de la radiación , Bacterias/efectos de la radiación , Desnitrificación/fisiología , Nitritos/metabolismo , Oxidación-Reducción , Nave Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...