Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 79: 101955, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39251117

RESUMEN

Mitochondria perform vital biosynthetic processes, including fatty acid synthesis and iron-sulfur (FeS) cluster biogenesis. In Saccharomyces cerevisiae mitochondria, the acyl carrier protein Acp1 participates in type II fatty acid synthesis, requiring a 4-phosphopantetheine (PP) prosthetic group. Acp1 also interacts with the mitochondrial FeS cluster assembly complex that contains the cysteine desulfurase Nfs1. Here we investigated the role of Acp1 in FeS cluster biogenesis in mitochondria and cytoplasm. In the Acp1-depleted (Acp1↓) cells, biogenesis of mitochondrial FeS proteins was impaired, likely due to greatly reduced Nfs1 protein and/or its persulfide-forming activity. Formation of cytoplasmic FeS proteins was also deficient, suggesting a disruption in generating the (Fe-S)int intermediate, that is exported from mitochondria and is subsequently utilized for cytoplasmic FeS cluster assembly. Iron homeostasis was perturbed, with enhanced iron uptake into the cells and accumulation of iron in mitochondria. The Δppt2 strain, lacking the mitochondrial ability to add PP to Acp1, phenocopied the Acp1↓ cells. These data suggest that the holo form of Acp1 with the PP-conjugated acyl chain is required for stability of the Nfs1 protein and/or stimulation of its persulfide-forming activity. Thus, mitochondria lacking Acp1 (or Ppt2) cannot support FeS cluster biogenesis in mitochondria or cytoplasm, leading to disrupted iron homeostasis.

2.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641180

RESUMEN

Iron­sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron­sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.


Asunto(s)
Citoplasma , Proteínas Hierro-Azufre , Mitocondrias , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Humanos , Citoplasma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Glutatión/metabolismo
3.
Neurology ; 101(15): e1567-e1571, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460232

RESUMEN

Pathogenic biallelic variants in ACO2, which encodes the enzyme mitochondrial aconitase, are associated with the very rare diagnosis of ACO2-related infantile cerebellar retinal degeneration (OMIM 614559). We describe the diagnostic odyssey of a 4-year-old female patient with profound global developmental delays, microcephaly, severe hypotonia, retinal dystrophy, seizures, and progressive cerebellar atrophy. Whole-exome sequencing revealed 2 variants in ACO2; c.2105_2106delAG (p.Gln702ArgfsX9), a likely pathogenic variant, and c.988C>T (p.Pro330Ser) which was classified as a variant of uncertain significance (VUS). While the VUS was confirmed to be maternally inherited, the phase of the other variant could not be confirmed due to lack of a paternal sample. Functional biochemical studies were performed on a research basis to clarify the interpretation of the VUS, which enabled clinical confirmation of the diagnosis of ACO2-related infantile cerebellar retinal degeneration for our patient.


Asunto(s)
Microcefalia , Malformaciones del Sistema Nervioso , Distrofias Retinianas , Femenino , Humanos , Niño , Preescolar , Aconitato Hidratasa , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Atrofia
4.
Mitochondrion ; 69: 104-115, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773733

RESUMEN

Iron-sulfur (Fe-S) cluster assembly in mitochondria and cytoplasm is essential for cell viability. In the yeast S. cerevisiae, Leu1 [4Fe-4S] is the cytoplasmic isopropylmalate isomerase involved in leucine biosynthesis. Using permeabilized Δleu1 cells and recombinant apo-Leu1R, here we show that the [4Fe-4S] cluster assembly on Leu1R can be reconstituted in a physiologic manner requiring both mitochondria and cytoplasm, as judged by conversion of the inactive enzyme to an active form. The mitochondrial contribution to this reconstitution assay is abrogated by inactivating mutations in the mitochondrial ISC (iron-sulfur cluster assembly) machinery components (such as Nfs1 cysteine desulfurase and Ssq1 chaperone) or the mitochondrial exporter Atm1. Likewise, depletion of a CIA (cytoplasmic iron-sulfur protein assembly) component Dre2 leads to impaired Leu1R reconstitution. Mitochondria likely make and export an intermediate, called X-S or (Fe-S)int, that is needed for cytoplasmic Fe-S cluster biosynthesis. Here we show that once exported, the same intermediate can be used for both [2Fe-2S] and [4Fe-4S] cluster biogenesis in the cytoplasm, with no further requirement of mitochondria. Our data also suggest that the exported intermediate can activate defective/latent CIA components in cytoplasm isolated from nfs1 or Δatm1 mutant cells. These findings may provide a way to isolate X-S or (Fe-S)int.


Asunto(s)
Hidroliasas , Proteínas Hierro-Azufre , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citoplasma/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo
5.
J Biol Inorg Chem ; 27(8): 759-773, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309885

RESUMEN

Mitochondrial [2Fe-2S] cluster biosynthesis is driven by the coordinated activities of the Iron-Sulfur Cluster (ISC) pathway protein machinery. Within the ISC machinery, the protein that provides a structural scaffold on which [2Fe-2S] clusters are assembled is the ISCU protein in humans; this protein is referred to as the "Scaffold" protein. Truncation of the C-terminal portion of ISCU causes the fatal disease "ISCU Myopathy", which exhibits phenotypes of reduced Fe-S cluster assembly in cells. In this report, the yeast ISCU ortholog "Isu1" has been characterized to gain a better understanding of the role of the scaffold protein in relation to [2Fe-2S] assembly and ISCU Myopathy. Here we explored the biophysical characteristics of the C-terminal region of Isu1, the segment of the protein that is truncated on the human ortholog during the disease ISCU Myopathy. We characterized the role of this region in relation to iron binding, protein stability, assembly of the ISC multiprotein complex required to accomplish Fe-S cluster assembly, and finally on overall cell viability. We determined the Isu1 C-terminus is essential for the completion of the Fe-S cluster assembly but serves a function independent of protein iron binding.


Asunto(s)
Proteínas Hierro-Azufre , Enfermedades Musculares , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Hierro-Azufre/metabolismo , Saccharomyces cerevisiae/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 294(24): 9489-9502, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31040179

RESUMEN

Iron-sulfur clusters are essential cofactors of proteins. In eukaryotes, iron-sulfur cluster biogenesis requires a mitochondrial iron-sulfur cluster machinery (ISC) and a cytoplasmic iron-sulfur protein assembly machinery (CIA). Here we used mitochondria and cytoplasm isolated from yeast cells, and [35S]cysteine to detect cytoplasmic Fe-35S cluster assembly on a purified apoprotein substrate. We showed that mitochondria generate an intermediate, called (Fe-S)int, needed for cytoplasmic iron-sulfur cluster assembly. The mitochondrial biosynthesis of (Fe-S)int required ISC components such as Nfs1 cysteine desulfurase, Isu1/2 scaffold, and Ssq1 chaperone. Mitochondria then exported (Fe-S)int via the Atm1 transporter in the inner membrane, and we detected (Fe-S)int in active form. When (Fe-S)int was added to cytoplasm, CIA utilized it for iron-sulfur cluster assembly without any further help from the mitochondria. We found that both iron and sulfur for cytoplasmic iron-sulfur cluster assembly originate from the mitochondria, revealing a surprising and novel mitochondrial role. Mitochondrial (Fe-S)int export was most efficient in the presence of cytoplasm containing an apoprotein substrate, suggesting that mitochondria respond to the cytoplasmic demand for iron-sulfur cluster synthesis. Of note, the (Fe-S)int is distinct from the sulfur intermediate called Sint, which is also made and exported by mitochondria but is instead used for cytoplasmic tRNA thiolation. In summary, our findings establish a direct and vital role of mitochondria in cytoplasmic iron-sulfur cluster assembly in yeast cells.


Asunto(s)
Citoplasma/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo , Transporte Biológico , Proteínas de Saccharomyces cerevisiae/metabolismo , Compuestos de Sulfhidrilo/metabolismo
7.
Mitochondrion ; 47: 256-265, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30660752

RESUMEN

Rim2 is an unusual mitochondrial carrier protein capable of transporting both iron and pyrimidine nucleotides. Here we characterize two point mutations generated in the predicted substrate-binding site, finding that they yield disparate effects on iron and pyrimidine transport. The Rim2 (E248A) mutant was deficient in mitochondrial iron transport activity. By contrast, the Rim2 (K299A) mutant specifically abrogated pyrimidine nucleotide transport and exchange, while leaving iron transport activity largely unaffected. Strikingly, E248A preserved TTP/TTP homoexchange but interfered with TTP/TMP heteroexchange, perhaps because proton coupling was dependent on the E248 acidic residue. Rim2-dependent iron transport was unaffected by pyrimidine nucleotides. Rim2-dependent pyrimidine transport was competed by Zn2+ but not by Fe2+, Fe3+ or Cu2+. The iron and pyrimidine nucleotide transport processes displayed different salt requirements; pyrimidine transport was dependent on the salt content of the buffer whereas iron transport was salt independent. In mitochondria containing Rim2 (E248A), iron proteins were decreased, including aconitase (Fe-S), pyruvate dehydrogenase (lipoic acid containing) and cytochrome c (heme protein). Additionally, the rate of Fe-S cluster synthesis in isolated and intact mitochondria was decreased compared with the K299A mutant, consistent with the impairment of iron-dependent functions in that mutant. In summary, mitochondrial iron transport and pyrimidine transport by Rim2 occur separately and independently. Rim2 could be a bifunctional carrier protein.


Asunto(s)
Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Pirimidinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Proteínas Mitocondriales/genética , Mutación Missense , Proteínas de Transporte de Nucleótidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Cell Chem Biol ; 25(6): 738-748.e3, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29706592

RESUMEN

In eukaryotes, mitochondria have been hypothesized to generate sulfur species required for tRNA thiolation in the cytosol, although no direct evidence thus far exists. Here we have detected these sulfur species, making use of our observation that isolated yeast cytosol alone is unable to thiolate tRNAs but can do so upon addition of mitochondria. Mitochondria were found to utilize the cysteine desulfurase Nfs1 to produce sulfur-containing species with masses ranging from 700 to 1,100 Da. Mitochondria exported these species via the Atm1 transporter in the inner membrane. Once exported to the cytosol, these sulfur species promoted cytosolic tRNA thiolation with no further requirement of mitochondria. Furthermore, we found that the Isu1/2 scaffolds but not the Ssq1 chaperone of the mitochondrial iron-sulfur cluster machinery were required for cytosolic tRNA thiolation, and thus the sulfur utilization pathway bifurcates at the Isu1/2 site for intra-organellar use in mitochondria or export to the cytosol.


Asunto(s)
Citosol/metabolismo , Mitocondrias/metabolismo , ARN de Transferencia/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Azufre/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/metabolismo , Citosol/química , Humanos , Mitocondrias/química , ARN de Transferencia/química , Compuestos de Sulfhidrilo/química , Azufre/química
9.
Mitochondrion ; 40: 29-41, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28941588

RESUMEN

The cysteine desulfurase Nfs1/Isd11 uses the amino acid cysteine as the substrate and its activity is absolutely required for contributing persulfide sulfur to the essential process of iron-sulfur (Fe-S) cluster assembly in mitochondria. Here we describe a novel regulatory process involving phosphorylation of Nfs1 in mitochondria. Phosphorylation enhanced cysteine desulfurase activity, while dephosphorylation decreased its activity. Nfs1 phosphopeptides were identified, and the corresponding phosphosite mutants showed impaired persulfide formation. Nfs1 pull down from mitochondria recovered an associated kinase activity, and Yck2, a kinase present in the pull down, was able to phosphorylate Nfs1 in vitro and stimulate cysteine desulfurase activity. Yck2 exhibited an eclipsed distribution in the mitochondrial matrix, although other cellular localizations have been previously described. Mitochondria lacking the Yck2 protein kinase (∆yck2) showed less phosphorylating activity for Nfs1. Compared with wild-type mitochondria, ∆yck2 mitochondria revealed slower persulfide formation on Nfs1 consistent with a role of Yck2 in regulating mitochondrial cysteine desulfurase activity. We propose that Nfs1 phosphorylation may provide a means of rapid adaptation to increased metabolic demand for sulfur and Fe-S clusters within mitochondria.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Regulación Fúngica de la Expresión Génica , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Sulfurtransferasas/metabolismo , Quinasa de la Caseína I/genética , Mitocondrias/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética
10.
Data Brief ; 15: 775-799, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29159215

RESUMEN

Fe-S clusters are cofactors that participate in diverse and essential biological processes. Mitochondria contain a complete machinery for Fe-S cluster assembly. Cysteine desulfurase (Nfs1) is required generation of a form of activated sulfur and is essential for the initial Fe-S cluster assembly step. Using mass-spectometry we identified proteins that were copurified with Nfs1 using a pull-down strategy, including a novel protein kinase. Furthermore, we were able to identify phosphorylation sites on the Nfs1 protein. These data and analyses support the research article "Cysteine desulfurase is regulated by phosphorylation of Nfs1 in yeast mitochondria" by Rocha et al. (in press) [1].

11.
Metallomics ; 9(1): 48-60, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-27738674

RESUMEN

FeS-clusters are utilized by numerous proteins within several biological pathways that are essential for life. In eukaryotes, the primary FeS-cluster production pathway is the mitochondrial iron-sulfur cluster (ISC) pathway. In Saccharomyces cerevisiae, de novo FeS-cluster formation is accomplished through coordinated assembly with the substrates iron and sulfur by the scaffold assembly protein "Isu1". Sulfur for cluster assembly is provided by cysteine desulfurase "Nfs1", a protein that works in union with its accessory protein "Isd11". Frataxin "Yfh1" helps direct cluster assembly by serving as a modulator of Nfs1 activity, by assisting in the delivery of sulfur and Fe(ii) to Isu1, or more likely through a combination of these and other possible roles. In vitro studies on the yeast ISC machinery have been limited, however, due to the inherent instability of recombinant Isu1. Isu1 is a molecule prone to degradation and aggregation. To circumvent Isu1 instability, we have replaced yeast Isu1 with the fly ortholog to stabilize our in vitro ISC assembly system and assist us in elucidating molecular details of the yeast ISC pathway. Our laboratory previously observed that recombinant frataxin from Drosophila melanogaster has remarkable stability compared to the yeast ortholog. Here we provide the first characterization of D. melanogaster Isu1 (fIscU) and demonstrate its ability to function within the yeast ISC machinery both in vivo and in vitro. Recombinant fIscU has physical properties similar to that of yeast Isu1. It functions as a stable dimer with similar Fe(ii) affinity and ability to form two 2Fe-2S clusters as the yeast dimer. The fIscU and yeast ISC proteins are compatible in vitro; addition of Yfh1 to Nfs1-Isd11 increases the rate of FeS-cluster formation on fIscU to a similar extent observed with Isu1. Finally, fIscU expressed in mitochondria of a yeast strain lacking Isu1 (and its paralog Isu2) is able to completely reverse the deletion phenotypes. These results demonstrate fIscU can functionally replace yeast Isu1 and it can serve as a powerful tool for exploring molecular details within the yeast ISC pathway.


Asunto(s)
Drosophila melanogaster/metabolismo , Proteínas Hierro-Azufre/metabolismo , Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/crecimiento & desarrollo , Técnicas In Vitro , Modelos Moleculares , Unión Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia
12.
Curr Opin Genet Dev ; 38: 45-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27061491

RESUMEN

Fe-S cluster assembly is an essential process for all cells. Impairment of Fe-S cluster assembly creates diseases in diverse and surprising ways. In one scenario, the loss of function of lipoic acid synthase, an enzyme with Fe-S cluster cofactor in mitochondria, impairs activity of various lipoamide-dependent enzymes with drastic consequences for metabolism. In a second scenario, the heme biosynthetic pathway in red cell precursors is specifically targeted, and iron homeostasis is perturbed, but lipoic acid synthesis is unaffected. In a third scenario, tRNA modifications arising from action of the cysteine desulfurase and/or Fe-S cluster proteins are lost, which may lead to impaired protein synthesis. These defects can then result in cancer, neurologic dysfunction or type 2 diabetes.


Asunto(s)
Hemo/biosíntesis , Proteínas Hierro-Azufre/genética , Hierro/metabolismo , Mitocondrias/genética , Liasas de Carbono-Azufre/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Eritrocitos/metabolismo , Hemo/genética , Humanos , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Familia de Multigenes , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Sulfurtransferasas/genética
13.
PLoS Genet ; 11(5): e1005135, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25996596

RESUMEN

Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenerative disease Friedreich's ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mitochondria, interacting with other components of the Fe-S cluster machinery, including cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methionine to isoleucine substitution (M141I), in which the E. coli amino acid is inserted at this position, corrected most of the phenotypes that result from lack of Yfh1 in yeast. This suppressor Isu1 behaved as a genetic dominant. Furthermore frataxin-bypass activity required a completely functional Nfs1 and correlated with the presence of efficient scaffold function. A screen of random Isu1 mutations for frataxin-bypass activity identified only M141 substitutions, including Ile, Cys, Leu, or Val. In each case, mitochondrial Nfs1 persulfide formation was enhanced, and mitochondrial Fe-S cluster assembly was improved in the absence of frataxin. Direct targeting of the entire E. coli IscU to ∆yfh1 mitochondria also ameliorated the mutant phenotypes. In contrast, expression of IscU with the reverse substitution i.e. IscU with Ile to Met change led to worsening of the ∆yfh1 phenotypes, including severely compromised growth, increased sensitivity to oxygen, deficiency in Fe-S clusters and heme, and impaired iron homeostasis. A bioinformatic survey of eukaryotic Isu1/prokaryotic IscU database entries sorted on the amino acid utilized at the M141 position identified unique groupings, with virtually all of the eukaryotic scaffolds using Met, and the preponderance of prokaryotic scaffolds using other amino acids. The frataxin-bypassing amino acids Cys, Ile, Leu, or Val, were found predominantly in prokaryotes. This amino acid position 141 is unique in Isu1, and the frataxin-bypass effect likely mimics a conserved and ancient feature of the prokaryotic Fe-S cluster assembly machinery.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Unión a Hierro/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Biología Computacional , Reparación del ADN , Escherichia coli/genética , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/genética , Familia de Multigenes , Mutación , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/genética , Frataxina
14.
J Biol Chem ; 290(1): 640-57, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25398879

RESUMEN

Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [(35)S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-(35)S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the (35)S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.


Asunto(s)
Adenosina Trifosfato/química , Guanosina Trifosfato/química , Hierro/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , NAD/química , Sulfuros/química , Aconitato Hidratasa/química , Aconitato Hidratasa/genética , Aconitato Hidratasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Línea Celular , Cisteína/química , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Expresión Génica , Guanosina Trifosfato/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Células HeLa , Humanos , Hierro/metabolismo , Ratones , Mitocondrias/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , NAD/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfuros/metabolismo , Radioisótopos de Azufre
15.
Biochem J ; 459(1): 71-81, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24433162

RESUMEN

Frataxin is a conserved mitochondrial protein, and deficiency underlies the neurodegenerative disease Friedreich's ataxia. Frataxin interacts with the core machinery for Fe-S cluster assembly in mitochondria. Recently we reported that in frataxin-deleted yeast strains, a spontaneously occurring mutation in one of two genes encoding redundant Isu scaffold proteins, bypassed the mutant phenotypes. In the present study we created strains expressing a single scaffold protein, either Isu1 or the bypass mutant M107I Isu1. Our results show that in the frataxin-deletion strain expressing the bypass mutant Isu1, cell growth, Fe-S cluster protein activities, haem proteins and iron homoeostasis were restored to normal or close to normal. The bypass effects were not mediated by changes in Isu1 expression level. The persulfide-forming activity of the cysteine desulfurase was diminished in the frataxin deletion (∆yfh1 ISU1) and was improved by expression of the bypass Isu1 (∆yfh1 M107I ISU1). The addition of purified bypass M107I Isu1 protein to a ∆yfh1 lysate conferred similar enhancement of cysteine desulfurase as did frataxin, suggesting that this effect contributed to the bypass mechanism. Fe-S cluster-forming activity in isolated mitochondria was stimulated by the bypass Isu1, albeit at a lower rate. The rescuing effects of the bypass Isu1 point to ways that the core defects in Friedreich's ataxia mitochondria can be restored.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Frataxina
16.
Antioxid Redox Signal ; 20(9): 1501-23, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24111926

RESUMEN

SIGNIFICANCE: During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES: Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES: The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS: Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.


Asunto(s)
Radiación Cósmica/efectos adversos , Vuelo Espacial , Animales , Gravedad Alterada , Humanos , Oxidación-Reducción/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo
17.
J Biol Chem ; 288(52): 36773-86, 2013 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-24217246

RESUMEN

For iron-sulfur (Fe-S) cluster synthesis in mitochondria, the sulfur is derived from the amino acid cysteine by the cysteine desulfurase activity of Nfs1. The enzyme binds the substrate cysteine in the pyridoxal phosphate-containing site, and a persulfide is formed on the active site cysteine in a manner depending on the accessory protein Isd11. The persulfide is then transferred to the scaffold Isu, where it combines with iron to form the Fe-S cluster intermediate. Frataxin is implicated in the process, although it is unclear where and how, and deficiency causes Friedreich ataxia. Using purified proteins and isolated mitochondria, we show here that the yeast frataxin homolog (Yfh1) directly and specifically stimulates cysteine binding to Nfs1 by exposing substrate-binding sites. This novel function of frataxin does not require iron, Isu1, or Isd11. Once bound to Nfs1, the substrate cysteine is the source of the Nfs1 persulfide, but this step is independent of frataxin and strictly dependent on Isd11. Recently, a point mutation in Isu1 was found to bypass many frataxin functions. The data presented here show that the Isu1 suppressor mimics the frataxin effects on Nfs1, explaining the bypassing activity. We propose a regulatory mechanism for the Nfs1 persulfide-forming activity. Specifically, at least two separate conformational changes must occur in the enzyme for optimum activity as follows: one is mediated by frataxin interaction that exposes the "buried" substrate-binding sites, and the other is mediated by Isd11 interaction that brings the bound substrate cysteine and the active site cysteine in proximity for persulfide formation.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sulfurtransferasas/metabolismo , Sitios de Unión , Liasas de Carbono-Azufre/genética , Cisteína/genética , Cisteína/metabolismo , Humanos , Proteínas de Unión a Hierro/genética , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Mitocondriales/genética , Modelos Biológicos , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sulfuros/metabolismo , Sulfurtransferasas/genética , Frataxina
18.
Eukaryot Cell ; 12(6): 913-22, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584995

RESUMEN

Two-component signal transduction pathways are one of the primary means by which microorganisms respond to environmental signals. These signaling cascades originated in prokaryotes and were inherited by eukaryotes via endosymbiotic lateral gene transfer from ancestral cyanobacteria. We report here that the nuclear genome of the pathogenic fungus Candida albicans contains elements of a two-component signaling pathway that seem to be targeted to the mitochondria. The C. albicans two-component response regulator protein Srr1 (stress response regulator 1) contains a mitochondrial targeting sequence at the N terminus, and fluorescence microscopy reveals mitochondrial localization of green fluorescent protein-tagged Srr1. Moreover, phylogenetic analysis indicates that C. albicans Srr1 is more closely related to histidine kinases and response regulators found in marine bacteria than are other two-component proteins present in the fungi. These data suggest conservation of this protein during the evolutionary transition from endosymbiont to a subcellular organelle. We used microarray analysis to determine whether the phenotypes observed with a srr1Δ/Δ mutant could be correlated with gene transcriptional changes. The expression of mitochondrial genes was altered in the srr1Δ/Δ null mutant in comparison to their expression in the wild type. Furthermore, apoptosis increased significantly in the srr1Δ/Δ mutant strain compared to the level of apoptosis in the wild type, suggesting the activation of a mitochondrion-dependent apoptotic cell death pathway in the srr1Δ/Δ mutant. Collectively, this study shows for the first time that a lower eukaryote like C. albicans possesses a two-component response regulator protein that has survived in mitochondria and regulates a subset of genes whose functions are associated with the oxidative stress response and programmed cell death (apoptosis).


Asunto(s)
Proteínas Bacterianas/genética , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas de Choque Térmico/genética , Mitocondrias/metabolismo , Proteínas Quinasas/genética , Transducción de Señal , Secuencia de Aminoácidos , Apoptosis , Proteínas Bacterianas/metabolismo , Evolución Biológica , Candida albicans/metabolismo , Candida albicans/ultraestructura , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/deficiencia , Histidina Quinasa , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Filogenia , Proteínas Quinasas/deficiencia , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
19.
Biochem J ; 448(2): 171-87, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22928949

RESUMEN

Cysteine desulfurases abstract sulfur from the substrate cysteine, generate a covalent persulfide on the active site cysteine of the enzyme, and then donate the persulfide sulfur to various recipients such as Fe-S clusters. In Saccharomyces cerevisiae, the Nfs1p protein is the only known cysteine desulfurase, and it forms a complex with Isd11p (Nfs1p·Isd11p). Both of these proteins are found primarily in mitochondria and both are essential for cell viability. In the present study we show, using the results of experiments with isolated mitochondria and purified proteins, that Isd11p is required for the cysteine desulfurase activity of Nfs1p. Whereas Nfs1p by itself was inactive, the Nfs1p·Isd11p complex formed persulfide and was active as a cysteine desulfurase. In the absence of Isd11p, Nfs1p was able to bind the substrate cysteine but failed to form a persulfide. Addition of Isd11p allowed Nfs1p with bound substrate to generate a covalent persulfide. We suggest that Isd11p induces an activating conformational change in Nfs1p to bring the bound substrate and the active site cysteine in proximity for persulfide formation. Thus mitochondrial Nfs1p is different from bacterial cysteine desulfurases that are active in the absence of accessory proteins. Isd11p may serve to regulate cysteine desulfurase activity in mitochondria.


Asunto(s)
Liasas de Carbono-Azufre/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sulfuros/metabolismo , Sulfurtransferasas/metabolismo , Alelos , Liasas de Carbono-Azufre/genética , Activación Enzimática , Genes Fúngicos , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Modelos Biológicos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Mutación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sulfurtransferasas/genética
20.
Mitochondrion ; 12(5): 539-49, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22813754

RESUMEN

Cysteine desulfurases generate a covalent persulfide intermediate from cysteine, and this activated form of sulfur is essential for the synthesis of iron-sulfur (Fe-S) clusters. In yeast mitochondria, there is a complete machinery for Fe-S cluster synthesis, including a cysteine desulfurase, Nfs1p. Here we show that following supplementation of isolated mitochondria with [(35)S]cysteine, a radiolabeled persulfide could be detected on Nfs1p. The persulfide persisted under conditions that did not permit Fe-S cluster formation, such as nucleotide and/or iron depletion of mitochondria. By contrast, under permissive conditions, the radiolabeled Nfs1p persulfide was greatly reduced and radiolabeled aconitase was formed, indicating transfer of persulfide to downstream Fe-S cluster recipients. Nfs1p in mitochondria was found to be relatively more resistant to inactivation by N-ethylmaleimide (NEM) as compared with a prokaryotic cysteine desulfurase. Mitochondria treated with NEM (1 mM) formed the persulfide on Nfs1p but failed to generate Fe-S clusters on aconitase, likely due to inactivation of downstream recipient(s) of the Nfs1p persulfide. Thus the Nfs1p-bound persulfide as described here represents a precursor en route to Fe-S cluster synthesis in mitochondria.


Asunto(s)
Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Sulfuros/metabolismo , Sulfurtransferasas/metabolismo , Aconitato Hidratasa/metabolismo , Cisteína/metabolismo , Marcaje Isotópico , Radioisótopos de Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA