Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Mov Sci ; 23(6): 837-60, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15664676

RESUMEN

Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an inverse relation between curvature and speed. The adaptive vector integration to endpoint handwriting (AVITEWRITE) model of Grossberg and Paine (2000) [A neural model of corticocerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Networks, 13, 999-1046] addressed how such complex movements may be learned through attentive imitation. The model suggested how parietal and motor cortical mechanisms, such as difference vector encoding, interact with adaptively-timed, predictive cerebellar learning during movement imitation and predictive performance. Key psychophysical and neural data about learning to make curved movements were simulated, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size scaling with isochrony, and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a two-thirds power law relation between angular velocity and curvature. However, the model learned from letter trajectories of only one subject, and only qualitative kinematic comparisons were made with previously published human data. The present work describes a quantitative test of AVITEWRITE through direct comparison of a corpus of human handwriting data with the model's performance when it learns by tracing the human trajectories. The results show that model performance was variable across the subjects, with an average correlation between the model and human data of 0.89+/-0.10. The present data from simulations using the AVITEWRITE model highlight some of its strengths while focusing attention on areas, such as novel shape learning in children, where all models of handwriting and the learning of other complex sensory-motor skills would benefit from further research.


Asunto(s)
Escritura Manual , Aprendizaje , Atención , Cerebelo/fisiología , Niño , Humanos , Conducta Imitativa , Modelos Estadísticos , Destreza Motora , Percepción Espacial , Percepción Visual
2.
Neural Netw ; 13(8-9): 999-1046, 2000.
Artículo en Inglés | MEDLINE | ID: mdl-11156206

RESUMEN

Much sensory-motor behavior develops through imitation, as during the learning of handwriting by children. Such complex sequential acts are broken down into distinct motor control synergies, or muscle groups, whose activities overlap in time to generate continuous, curved movements that obey an inverse relation between curvature and speed. How are such complex movements learned through attentive imitation? Novel movements may be made as a series of distinct segments, but a practiced movement can be made smoothly, with a continuous, often bell-shaped, velocity profile. How does learning of complex movements transform reactive imitation into predictive, automatic performance? A neural model is developed which suggests how parietal and motor cortical mechanisms, such as difference vector encoding, interact with adaptively timed, predictive cerebellar learning during movement imitation and predictive performance. To initiate movement, visual attention shifts along the shape to be imitated and generates vector movement using motor cortical cells. During such an imitative movement, cerebellar Purkinje cells with a spectrum of delayed response profiles sample and learn the changing directional information and, in turn, send that learned information back to the cortex and eventually to the muscle synergies involved. If the imitative movement deviates from an attentional focus around a shape to be imitated, the visual system shifts attention, and may make an eye movement, back to the shape, thereby providing corrective directional information to the arm movement system. This imitative movement cycle repeats until the cortico-cerebellar system can accurately drive the movement based on memory alone. A cortical working memory buffer transiently stores the cerebellar output and releases it at a variable rate, allowing speed scaling of learned movements which is limited by the rate of cerebellar memory readout. Movements can be learned at variable speeds if the density of the spectrum of delayed cellular responses in the cerebellum varies with speed. Learning at slower speeds facilitates learning at faster speeds. Size can be varied after learning while keeping the movement duration constant (isochrony). Context-effects arise from the overlap of cerebellar memory outputs. The model is used to simulate key psychophysical and neural data about learning to make curved movements, including a decrease in writing time as learning progresses; generation of unimodal, bell-shaped velocity profiles for each movement synergy; size and speed scaling with preservation of the letter shape and the shapes of the velocity profiles; an inverse relation between curvature and tangential velocity; and a Two-Thirds Power Law relation between angular velocity and curvature.


Asunto(s)
Atención/fisiología , Cerebelo/fisiología , Corteza Cerebral/fisiología , Escritura Manual , Aprendizaje/fisiología , Modelos Neurológicos , Mapeo Encefálico , Simulación por Computador , Humanos , Corteza Motora/fisiología , Lóbulo Parietal/fisiología , Desempeño Psicomotor , Células de Purkinje/fisiología , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA