Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958776

RESUMEN

Glioblastoma (GB) and brain metastases (BM) are the most common brain tumors in adults and are invariably associated with a dismal outcome. These highly malignant tumors share common features including increased invasion and migration of the primary or metastatic brain cancer cells, whose triggering mechanisms are largely unknown. Emerging evidence has suggested that the ubiquitin-conjugating enzyme E2C (UBE2C), essential for controlling cell cycle progression, is overexpressed in diverse malignancies, including brain cancer. This review highlights the crucial role of UBE2C in brain tumorigenesis and its association with higher proliferative phenotype and histopathological grade, with autophagy and apoptosis suppression, epithelial-to-mesenchymal transition (EMT), invasion, migration, and dissemination. High expression of UBE2C has been associated with patients' poor prognosis and drug resistance. UBE2C has also been proven as a promising therapeutic target, despite the lack of specific inhibitors. Thus, there is a need to further explore the role of UBE2C in malignant brain cancer and to develop effective targeted therapies for patients with this deadly disease.


Asunto(s)
Neoplasias Encefálicas , Enzimas Ubiquitina-Conjugadoras , Adulto , Humanos , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Neoplasias Encefálicas/genética , Carcinogénesis
2.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37976029

RESUMEN

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Meduloblastoma , ARN Largo no Codificante , Animales , Niño , Humanos , Ratones , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Regulación Neoplásica de la Expresión Génica , Meduloblastoma/patología , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Largo no Codificante/genética
3.
Neurooncol Adv ; 5(1): vdad048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215954

RESUMEN

Background: Despite current improvements in systemic cancer treatment, brain metastases (BM) remain incurable, and there is an unmet clinical need for effective targeted therapies. Methods: Here, we sought common molecular events in brain metastatic disease. RNA sequencing of thirty human BM identified the upregulation of UBE2C, a gene that ensures the correct transition from metaphase to anaphase, across different primary tumor origins. Results: Tissue microarray analysis of an independent BM patient cohort revealed that high expression of UBE2C was associated with decreased survival. UBE2C-driven orthotopic mouse models developed extensive leptomeningeal dissemination, likely due to increased migration and invasion. Early cancer treatment with dactolisib (dual PI3K/mTOR inhibitor) prevented the development of UBE2C-induced leptomeningeal metastases. Conclusions: Our findings reveal UBE2C as a key player in the development of metastatic brain disease and highlight PI3K/mTOR inhibition as a promising anticancer therapy to prevent late-stage metastatic brain cancer.

4.
Cell Death Dis ; 13(9): 806, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127323

RESUMEN

Atypical teratoid/rhabdoid tumor (AT/RT) is a highly malignant brain tumor in infants that is characterized by loss of nuclear expression of SMARCB1 or SMARCA4 proteins. Recent studies show that AT/RTs comprise three molecular subgroups, namely AT/RT-TYR, AT/RT-MYC and AT/RT-SHH. The subgroups show distinct expression patterns of genes involved in ciliogenesis, however, little is known about the functional roles of primary cilia in the biology of AT/RT. Here, we show that primary cilia are present across all AT/RT subgroups with specific enrichment in AT/RT-TYR patient samples. Furthermore, we demonstrate that primary ciliogenesis contributes to AT/RT biology in vitro and in vivo. Specifically, we observed a significant decrease in proliferation and clonogenicity following disruption of primary ciliogenesis in AT/RT cell line models. Additionally, apoptosis was significantly increased via the induction of STAT1 and DR5 signaling, as detected by proteogenomic profiling. In a Drosophila model of SMARCB1 deficiency, concomitant knockdown of several cilia-associated genes resulted in a substantial shift of the lethal phenotype with more than 20% of flies reaching adulthood. We also found significantly extended survival in an orthotopic xenograft mouse model of AT/RT upon disruption of primary ciliogenesis. Taken together, our findings indicate that primary ciliogenesis or its downstream signaling contributes to the aggressiveness of AT/RT and, therefore, may constitute a novel therapeutic target.


Asunto(s)
Neoplasias Encefálicas , Tumor Rabdoide , Teratoma , Animales , Neoplasias Encefálicas/genética , Cilios/metabolismo , ADN Helicasas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología , Transducción de Señal , Teratoma/genética , Teratoma/patología , Factores de Transcripción/genética , Factores de Transcripción/uso terapéutico
5.
Cell Rep Med ; 3(5): 100623, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584628

RESUMEN

Dissemination of cancer cells from primary tumors to the brain occurs in many cancer patients, increasing morbidity and death. There is an unmet medical need to develop translational platforms to evaluate therapeutic responses. Toward this goal, we established a library of 23 patient-derived xenografts (PDXs) of brain metastases (BMs) from eight distinct primary tumors. In vivo tumor formation correlates with patients' poor survival. Mouse subcutaneous xenografts develop spontaneous metastases and intracardiac PDXs increase dissemination to the CNS, both models mimicking the dissemination pattern of the donor patient. We test the FDA-approved drugs buparlisib (pan-PI3K inhibitor) and everolimus (mTOR inhibitor) and show their efficacy in treating our models. Finally, we show by RNA sequencing that human BMs and their matched PDXs have similar transcriptional profiles. Overall, these models of BMs recapitulate the biology of human metastatic disease and can be valuable translational platforms for precision medicine.


Asunto(s)
Neoplasias Encefálicas , Fosfatidilinositol 3-Quinasas , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Medicina de Precisión
6.
Neuro Oncol ; 24(9): 1509-1523, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35307743

RESUMEN

BACKGROUND: Intratumoral heterogeneity is crucially involved in metastasis, resistance to therapy, and cancer relapse. Amplifications of the proto-oncogene MYC display notable heterogeneity at the single-cell level and are associated with a particularly dismal prognosis in high-risk medulloblastomas (MBs). The aim of this study was to establish the relevance of interclonal cross-talk between MYC-driven and non-MYC-driven MB cells. METHODS: We used fluorescence in situ hybridization, single-cell transcriptomics, and immunohistochemistry, in vitro isogenic cell models, non-targeted proteomics, mass spectrometry-based metabolite quantification, HUVECs tube formation assay, and orthotopic in vivo experiments to investigate interclonal cross-talk in MB. RESULTS: We found that the release of lactate dehydrogenase A (LDHA) from MYC-driven cells facilitates metastatic seeding and outgrowth, while secretion of dickkopf WNT signaling pathway inhibitor 3 from non-MYC-driven cells promotes tumor angiogenesis. This tumor-supporting interaction between both subclones was abrogated by targeting the secretome through pharmacological and genetic inhibition of LDHA, which significantly suppressed tumor cell migration. CONCLUSION: Our study reveals the functional relevance of clonal diversity and highlights the therapeutic potential of targeting the secretome to interrupt interclonal communication and progression in high-risk MB.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/patología , Humanos , Hibridación Fluorescente in Situ , Meduloblastoma/patología , Pronóstico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
7.
PLoS One ; 10(12): e0142448, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26658436

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by cellular infiltration into the joints, hyperproliferation of synovial cells and bone damage. Available treatments for RA only induce remission in around 30% of the patients, have important adverse effects and its use is limited by their high cost. Therefore, compounds that can control arthritis, with an acceptable safety profile and low production costs are still an unmet need. We have shown, in vitro, that celastrol inhibits both IL-1ß and TNF, which play an important role in RA, and, in vivo, that celastrol has significant anti-inflammatory properties. Our main goal in this work was to test the effect of celastrol in the number of sublining CD68 macrophages (a biomarker of therapeutic response for novel RA treatments) and on the overall synovial tissue cellularity and joint structure in the adjuvant-induced rat model of arthritis (AIA). METHODS: Celastrol was administered to AIA rats both in the early (4 days after disease induction) and late (11 days after disease induction) phases of arthritis development. The inflammatory score, ankle perimeter and body weight were evaluated during treatment period. Rats were sacrificed after 22 days of disease progression and blood, internal organs and paw samples were collected for toxicological blood parameters and serum proinflammatory cytokine quantification, as well as histopathological and immunohistochemical evaluation, respectively. RESULTS: Here we report that celastrol significantly decreases the number of sublining CD68 macrophages and the overall synovial inflammatory cellularity, and halted joint destruction without side effects. CONCLUSIONS: Our results validate celastrol as a promising compound for the treatment of arthritis.


Asunto(s)
Antiinflamatorios/farmacología , Antígenos CD/inmunología , Antígenos de Diferenciación Mielomonocítica/inmunología , Artritis Experimental/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Triterpenos/farmacología , Adyuvantes Inmunológicos , Animales , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Artritis Experimental/inducido químicamente , Artritis Experimental/genética , Artritis Experimental/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Recuento de Células , Femenino , Expresión Génica , Humanos , Inyecciones Intraperitoneales , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Macrófagos/inmunología , Macrófagos/patología , Triterpenos Pentacíclicos , Ratas , Ratas Wistar , Membrana Sinovial/efectos de los fármacos , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...