Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 645: 71-78, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36680939

RESUMEN

Carbohydrate-binding modules (CBMs) constitute independently folded domains typically associated with carbohydrate-active enzymes (CAZymes). These modules are considered to have a rigid structure without notable conformational changes upon ligand binding, exhibiting a complementary topography in relation to the target carbohydrate. Herein, the high-resolution SAD-solved structure of a CBM from family 3 (BsCBM3) that binds to crystalline cellulose is reported in two crystalline forms. This module showed molecular plasticity with structural differences detected between the two crystalline forms and high RMSD values when compared to NMR ensemble of models. Pronounced structural variances were observed in the cellulose binding interface between NMR and XTAL structures, which were corroborated by molecular dynamics simulations. These findings support that family 3 CBMs targeting to cellulose are rather structurally dynamic modules than rigid entities, suggesting a potential role of conformational changes in polysaccharide recognition and modulation of enzyme activity.


Asunto(s)
Carbohidratos , Celulosa , Celulosa/química , Carbohidratos/química , Polisacáridos , Simulación de Dinámica Molecular , Unión Proteica , Cristalografía por Rayos X
2.
J Struct Biol ; 177(2): 469-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22155669

RESUMEN

The breakdown of ß-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of ß-mannanases. In this work, a two-domain ß-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/ß)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.


Asunto(s)
Proteínas Bacterianas/química , Bacilos Gramnegativos Anaerobios Rectos, Curvos y Espirales/enzimología , Manosidasas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Glucosa/química , Cinética , Maltosa/química , Manosidasas/genética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Desnaturalización Proteica , Eliminación de Secuencia , Especificidad por Sustrato , Propiedades de Superficie
3.
Proteins ; 78(16): 3386-95, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20848643

RESUMEN

Many plant pathogenic bacteria rely on effector proteins to suppress defense and manipulate host cell mechanisms to cause disease. The effector protein PthA modulates the host transcriptome to promote citrus canker. PthA possesses unusual protein architecture with an internal region encompassing variable numbers of near-identical tandem repeats of 34 amino acids termed the repeat domain. This domain mediates protein-protein and protein-DNA interactions, and two polymorphic residues in each repeat unit determine DNA specificity. To gain insights into how the repeat domain promotes protein-protein and protein-DNA contacts, we have solved the structure of a peptide corresponding to 1.5 units of the PthA repeat domain by nuclear magnetic resonance (NMR) and carried out small-angle X-ray scattering (SAXS) and spectroscopic studies on the entire 15.5-repeat domain of PthA2 (RD2). Consistent with secondary structure predictions and circular dichroism data, the NMR structure of the 1.5-repeat peptide reveals three α-helices connected by two turns that fold into a tetratricopeptide repeat (TPR)-like domain. The NMR structure corroborates the theoretical TPR superhelix predicted for RD2, which is also in agreement with the elongated shape of RD2 determined by SAXS. Furthermore, RD2 undergoes conformational changes in a pH-dependent manner and upon DNA interaction, and shows sequence similarities to pentatricopeptide repeat (PPR), a nucleic acid-binding motif structurally related to TPR. The results point to a model in which the RD2 structure changes its compactness as it embraces the DNA with the polymorphic diresidues facing the interior of the superhelix oriented toward the nucleotide bases.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Secuencias Repetitivas de Aminoácido , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dicroismo Circular , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Péptidos/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA