Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(1): e0291181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38241219

RESUMEN

Fomites might be responsible for virus introduction in swine farms, highlighting the importance of implementing practices to minimize the probability of virus introduction. The study's objective was to assess the efficacy of different combinations of temperatures and holding-times on detecting live PRRSV and PEDV on surfaces commonly found in supply entry rooms in swine farms. Two PRRSV isolates (MN 184 and 1-4-4 L1C variant) and one PEDV isolate (NC 49469/2013) were inoculated on cardboard and aluminum. An experimental study tested combinations of four temperatures (20°C, 30°C, 40°C, and 50°C) and six holding-times (15 minutes, 60 minutes, 6 hours, 12 hours, 24 hours, and 36 hours) for the presence of the viruses on each surface type. After virus titration, virus presence was assessed by assessing the cytopathic effects and immunofluorescence staining. The titers were expressed as log10 TCID50/ml, and regression models; half-lives equations were calculated to assess differences between treatments and time to not detect the live virus. The results suggest that the minimum time that surfaces should be held to not detect the virus at 30°C was 24 hours, 40°C required 12 hours, and 50°C required 6 hours; aluminum surfaces took longer to reach the desired temperature compared to cardboard. The results suggest that PRRSV 1-4-4 L1C variant had higher half-lives at higher temperatures than PRRSV MN 184. In conclusion, time and temperature combinations effectively decrease the concentration of PRRSV and PEDV on different surfaces found in supply entry rooms in swine farms.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus de la Diarrea Epidémica Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Porcinos , Animales , Temperatura , Aluminio
2.
Front Vet Sci ; 10: 1200376, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635762

RESUMEN

Introduction: The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods: Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results: Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion: ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.

3.
Prev Vet Med ; 213: 105883, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36867926

RESUMEN

Sow mortality has significantly increased throughout the world over the past several years, and it is a growing concern to the global swine industry. Sow mortality increases economic losses, including higher replacement rates, affects employees' morale, and raises concerns about animal well-being and sustainability. This study aimed to assess herd-level risk factors associated with sow mortality in a large swine production system in the Midwestern United States. This retrospective observational study used available production, health, nutritional, and management information between July 2019 and December 2021. A Poisson mixed regression model was used to identify the risk factors and to build a multivariate model using the weekly mortality rate per 1000 sows as the outcome. Different models were used to identify the risk factors according to this study's main reasons for sow mortality (total death, sudden death, lameness, and prolapse). The main reported causes of sow mortality were sudden death (31.22 %), lameness (28.78 %), prolapse (28.02 %), and other causes (11.99 %). The median (25th-75th percentile) distribution of the crude sow mortality rate/1000 sows was 3.37 (2.19 - 4.16). Breeding herds classified as epidemic for porcine reproductive and respiratory syndrome virus (PRRSV) were associated with higher total death, sudden death, and lameness death. Open pen gestation was associated with a higher total death and lameness compared with stalls. Pulses of feed medication was associated with lower sow mortality rate for all outcomes. Farms not performing bump feeding were associated with higher sow mortality due to lameness and prolapses, while Senecavirus A (SVA)-positive herds were associated with a higher mortality rate for total deaths and deaths due to lameness. Disease interactions (herds Mycoplasma hyopneumoniae positive and epidemic for PRRSV; SVA positive herds and epidemic for PRRSV) were associated with higher mortality rates compared to farms with single disease status. This study identified and measured the major risk factors associated with total sow mortality rate, sudden deaths, lameness deaths, and prolapse deaths in breeding herds under field conditions.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Animales , Femenino , Cojera Animal , Medio Oeste de Estados Unidos/epidemiología , Factores de Riesgo , Porcinos , Enfermedades de los Porcinos/epidemiología
4.
PLoS One ; 12(8): e0182254, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28832638

RESUMEN

Increased energy demand has led to plans for building many new dams in the western Amazon, mostly in the Andean region. Historical data and mechanistic scenarios are used to examine potential impacts above and below six of the largest dams planned for the region, including reductions in downstream sediment and nutrient supplies, changes in downstream flood pulse, changes in upstream and downstream fish yields, reservoir siltation, greenhouse gas emissions and mercury contamination. Together, these six dams are predicted to reduce the supply of sediments, phosphorus and nitrogen from the Andean region by 69, 67 and 57% and to the entire Amazon basin by 64, 51 and 23%, respectively. These large reductions in sediment and nutrient supplies will have major impacts on channel geomorphology, floodplain fertility and aquatic productivity. These effects will be greatest near the dams and extend to the lowland floodplains. Attenuation of the downstream flood pulse is expected to alter the survival, phenology and growth of floodplain vegetation and reduce fish yields below the dams. Reservoir filling times due to siltation are predicted to vary from 106-6240 years, affecting the storage performance of some dams. Total CO2 equivalent carbon emission from 4 Andean dams was expected to average 10 Tg y-1 during the first 30 years of operation, resulting in a MegaWatt weighted Carbon Emission Factor of 0.139 tons C MWhr-1. Mercury contamination in fish and local human populations is expected to increase both above and below the dams creating significant health risks. Reservoir fish yields will compensate some downstream losses, but increased mercury contamination could offset these benefits.


Asunto(s)
Ecosistema , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA