Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37764372

RESUMEN

Guava, pitanga and acerola are known for their vitamin content and high levels of bioactive compounds. Thus, the preparation of combinations of these fruits comprises a blend with high nutraceutical potential, yielding a strong and attractive pigmentation material. In this study, the influence of different proportions of maltodextrin on the lyophilization of a blend of guava, acerola and pitanga was evaluated considering not only the physicochemical, physical and colorimetric parameters but also the bioactive compounds in the obtained powders. The blend was formulated from the mixture and homogenization of the three pulps in a ratio of 1:1:1 (m/m), then maltodextrin was added to the blend, resulting in four formulations: blend without adjuvant (BL0), and the others containing 10% (BL10), 20% (BL20) and 30% (BL30) maltodextrin. The formulations were lyophilized and disintegrated to obtain powders. The powders were characterized in terms of water content, water activity, pH, total titratable acidity, ash, total and reducing sugars, ascorbic acid, total phenolic content, flavonoids, anthocyanins, carotenoids, lycopene, color parameters, Hausner factor, Carr index, angle of repose, solubility, wettability and porosity. All evaluated powders showed high levels of bioactive compounds and the increase in maltodextrin concentration promoted positive effects, such as reductions in water content, water activity and porosity and improved flow, cohesiveness and solubility characteristics.

2.
Foods ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444246

RESUMEN

Foam mat drying is a widely used technique for liquid products because it has a number of advantages; however, for an efficient process, the choice of additives and temperatures is extremely important. The objective of this study was to evaluate the effect of additives and drying temperatures on the powders obtained from the blend of tropical red fruits, such as acerola, guava, and pitanga. The foam formulations were prepared by mixing the pulps of the three fruits in equal proportions (1:1:1), all added with 6% albumin and 1% stabilizing agent: E1, gum Arabic; E2, guar gum; E3, gelatin. The combinations were subjected to beating, and subsequently, they were dried in an oven with forced air circulation at four temperatures (50 to 80 °C), with a mat thickness of 0.5 cm. The obtained powders showed low levels of water and water activity and high levels of bioactive compounds, colors with a predominance of yellow, intermediate cohesiveness, poor fluidity, and solubility above 50%. The best temperature for obtaining the powders was 60 °C. The formulation that produced the best results for the production of the tropical red fruit blend powder was the combination of albumin and gelatin.

3.
Foods ; 12(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37297351

RESUMEN

Pepper (Capsicum spp.) is among the oldest and most cultivated crops on the planet. Its fruits are widely used as natural condiments in the food industry for their color, flavor, and pungency properties. Peppers have abundant production; on the other hand, their fruits are perishable, deteriorating within a few days after harvesting. Therefore, they need adequate conservation methods to increase their useful life. This study aimed to mathematically model the drying kinetics of smelling peppers (Capsicum chinense) and pout peppers (Capsicum chinense Jacq.) to obtain the thermodynamic properties involved in the process and to determine the influence of drying on the proximal composition of these peppers. Whole peppers, containing the seeds, were dried in an oven with forced air circulation, at temperatures of 50, 60, 70, and 80 °C, with an air speed of 1.0 m/s. Ten models were adjusted to the experimental data, but the Midilli model was the one that provided the best values of coefficient of determination and lowest values of the mean squared deviation and chi-square value in most of the temperatures under study. The effective diffusivities were well represented by an Arrhenius equation, appearing in the order of 10-10 m2·s-1 for both materials under study, since the activation energy of the smelling pepper was 31.01 kJ·mol-1 and was 30.11 kJ·mol-1 in the pout pepper, respectively. Thermodynamic properties in both processes of drying the peppers pointed to a non-spontaneous process, with positive values of enthalpy and Gibbs free energy and negative values of entropy. Regarding the influence of drying on the proximal composition, it was observed that, with the increase in temperature, there was a decrease in the water content and the concentration of macronutrients (lipids, proteins, and carbohydrates), providing an increase in the energy value. The powders obtained in the study were presented as an alternative for the technological and industrial use of peppers, favoring obtaining a new condiment, rich in bioactives, providing the market with a new option of powdered product that can be consumed directly and even adopted by the industry as a raw material in the preparation of mixed seasonings and in the formulation of various food products.

4.
Molecules ; 28(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37375421

RESUMEN

The combination of fruit pulps from different species, in addition to multiplying the offer of flavors, aromas and textures, favors the nutritional spectrum and the diversity of bioactive principles. The objective was to evaluate and compare the physicochemical characteristics, bioactive compounds, profile of phenolic compounds and in vitro antioxidant activity of pulps of three species of tropical red fruits (acerola, guava and pitanga) and of the blend produced from the combination. The pulps showed significant values of bioactive compounds, with emphasis on acerola, which had the highest levels in all parameters, except for lycopene, with the highest content in pitanga pulp. Nineteen phenolic compounds were identified, being phenolic acids, flavanols, anthocyanin and stilbene; of these, eighteen were quantified in acerola, nine in guava, twelve in pitanga and fourteen in the blend. The blend combined positive characteristics conferred by the individual pulps, with low pH favorable for conservation, high levels of total soluble solids and sugars, greater diversity of phenolic compounds and antioxidant activity close to that of acerola pulp. Pearson's correlation between antioxidant activity and ascorbic acid content, total phenolic compounds, flavonoids, anthocyanins and carotenoids for the samples were positive, indicating their use as a source of bioactive compounds.


Asunto(s)
Eugenia , Psidium , Antioxidantes/química , Frutas/química , Antocianinas/análisis , Ácido Ascórbico/análisis , Fenoles/química , Psidium/química
5.
Foods ; 12(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36766097

RESUMEN

Gum and mucilage from seeds and fruits are objects of study because they have characteristics of high viscosity at low concentrations and gelling properties, which are useful characteristics for modifying the texture and stabilizing products in the food industry. Chia and okra have high concentrations of polysaccharide gums in their composition, which makes them an interesting target for use in the composition of foods that require the use of texture enhancers and stabilizers. The present study investigated the influence of dehydration temperature on the characteristics of chia and okra powder mucilage obtained at different temperatures. The mucilages were extracted using an aqueous process and dehydrated in an air circulation oven at 50, 60, and 70 °C until hydroscopic equilibrium. Then, the powdered chia mucilage (CM) and okra mucilage (OM) were analyzed for chemical and physicochemical characteristics, bioactive compounds, antioxidant activity, and physical properties. It was found that powdered mucilage had low water content and water activity, with CM standing out in terms of ash, pectin, and starch content and OM, along with higher averages of proteins, sugars, total phenolic compounds, anthocyanins, flavonoids, and antioxidant activity. As for the physical parameters, CM stood out in relation to greater solubility and lower hygroscopicity, whereas OM presented higher wettability rates. Both powdered mucilages were classified as having good fluidity and cohesiveness from low to intermediate. In relation to the dehydration temperature, the best mucilage properties were verified at 70 °C. The study revealed that mucilages have good functional properties offering great potential as raw material for industry.

6.
Foods ; 12(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36673378

RESUMEN

Pomegranate is a fruit desirable for its nutritional and medicinal properties which has a great industrial potential that is yet under-explored. Notable for its integral use, the peels are used in medicinal infusions and the seeds consumed without restrictions. In this sense, the objective of this work is to determine the drying kinetics of pomegranate peels and seeds in a hot air circulation oven, at temperatures of 50, 60, and 70 °C, adjust mathematical models to experimental data, determine the effective diffusivities and thermodynamic properties of the process and the physicochemical characteristics of peels and seeds of fresh pomegranates and in their flours. Twelve models were used to adjust the drying kinetics, obtaining better results with the Diffusion Approximation model, Verma, and modified Henderson and Pabis. The effective diffusivities were well represented by an Arrhenius equation, with activation energies of 31.39 kJ/mol for seeds and 10.60 kJ/mol for peels. In the drying process, the seeds showed higher values of enthalpy, entropy, and Gibbs free energy concerning peels. Pomegranate peel and seed flours have proximal composition and distinct physicochemical characteristics, with high fiber, carbohydrate, and energy content. In addition, peel flours stand out for their mineral content, and seed flours do for their lipid and protein content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...