Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 181(17): 3160-3171, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715413

RESUMEN

BACKGROUND AND PURPOSE: The voltage-gated sodium channel isoform NaV1.7 is a high-interest target for the development of non-opioid analgesics due to its preferential expression in pain-sensing neurons. NaV1.7 is also expressed in autonomic neurons, yet its contribution to involuntary visceral reflexes has received limited attention. The small molecule inhibitor ST-2560 was advanced into pain behaviour and cardiovascular models to understand the pharmacodynamic effects of selective inhibition of NaV1.7. EXPERIMENTAL APPROACH: Potency of ST-2560 at NaV1.7 and off-target ion channels was evaluated by whole-cell patch-clamp electrophysiology. Effects on nocifensive reflexes were assessed in non-human primate (NHP) behavioural models, employing the chemical capsaicin and mechanical stimuli. Cardiovascular parameters were monitored continuously in freely-moving, telemetered NHPs following administration of vehicle and ST-2560. KEY RESULTS: ST-2560 is a potent inhibitor (IC50 = 39 nM) of NaV1.7 in primates with ≥1000-fold selectivity over other isoforms of the human NaV1.x family. Following systemic administration, ST-2560 (0.1-0.3 mg·kg-1, s.c.) suppressed noxious mechanical- and chemical-evoked reflexes at free plasma concentrations threefold to fivefold above NaV1.7 IC50. ST-2560 (0.1-1.0 mg·kg-1, s.c.) also produced changes in haemodynamic parameters, most notably a 10- to 20-mmHg reduction in systolic and diastolic arterial blood pressure, at similar exposures. CONCLUSIONS AND IMPLICATIONS: Acute pharmacological inhibition of NaV1.7 is antinociceptive, but also has the potential to impact the cardiovascular system. Further work is merited to understand the role of NaV1.7 in autonomic ganglia involved in the control of heart rate and blood pressure, and the effect of selective NaV1.7 inhibition on cardiovascular function.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Masculino , Humanos , Femenino , Reflejo/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Relación Dosis-Respuesta a Droga
2.
ACS Med Chem Lett ; 13(11): 1763-1768, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385936

RESUMEN

The voltage-gated sodium channel isoform NaV1.7 has drawn widespread interest as a target for non-opioid, investigational new drugs to treat pain. Selectivity over homologous, off-target sodium channel isoforms, which are expressed in peripheral motor neurons, the central nervous system, skeletal muscle and the heart, poses a significant challenge to the development of small molecule inhibitors of NaV1.7. Most inhibitors of NaV1.7 disclosed to date belong to a class of aryl and acyl sulfonamides that preferentially bind to an inactivated conformation of the channel. By taking advantage of a sequence variation unique to primate NaV1.7 in the extracellular pore of the channel, a series of bis-guanidinium analogues of the natural product, saxitoxin, has been identified that are potent against the resting conformation of the channel. A compound of interest, 25, exhibits >600-fold selectivity over off-target sodium channel isoforms and is efficacious in a preclinical model of acute pain.

3.
Pain ; 162(4): 1250-1261, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33086288

RESUMEN

ABSTRACT: The voltage-gated sodium channel Nav1.7 is highly expressed in nociceptive afferents and is critically involved in pain signal transmission. Nav1.7 is a genetically validated pain target in humans because loss-of-function mutations cause congenital insensitivity to pain and gain-of-function mutations cause severe pain syndromes. Consequently, pharmacological inhibition has been investigated as an analgesic therapeutic strategy. We describe a small molecule Nav1.7 inhibitor, ST-2530, that is an analog of the naturally occurring sodium channel blocker saxitoxin. When evaluated against human Nav1.7 by patch-clamp electrophysiology using a protocol that favors the resting state, the Kd of ST-2530 was 25 ± 7 nM. ST-2530 exhibited greater than 500-fold selectivity over human voltage-gated sodium channel isoforms Nav1.1-Nav1.6 and Nav1.8. Although ST-2530 had lower affinity against mouse Nav1.7 (Kd = 250 ± 40 nM), potency was sufficient to assess analgesic efficacy in mouse pain models. A 3-mg/kg dose administered subcutaneously was broadly analgesic in acute pain models using noxious thermal, mechanical, and chemical stimuli. ST-2530 also reversed thermal hypersensitivity after a surgical incision on the plantar surface of the hind paw. In the spared nerve injury model of neuropathic pain, ST-2530 transiently reversed mechanical allodynia. These analgesic effects were demonstrated at doses that did not affect locomotion, motor coordination, or olfaction. Collectively, results from this study indicate that pharmacological inhibition of Nav1.7 by a small molecule agent with affinity for the resting state of the channel is sufficient to produce analgesia in a range of preclinical pain models.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Saxitoxina , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.8/genética , Isoformas de Proteínas , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico
4.
J Med Chem ; 62(19): 8695-8710, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31012583

RESUMEN

Voltage-gated sodium ion channel subtype 1.7 (NaV1.7) is a high interest target for the discovery of non-opioid analgesics. Compelling evidence from human genetic data, particularly the finding that persons lacking functional NaV1.7 are insensitive to pain, has spurred considerable effort to develop selective inhibitors of this Na+ ion channel target as analgesic medicines. Recent clinical setbacks and disappointing performance of preclinical compounds in animal pain models, however, have led to skepticism around the potential of selective NaV1.7 inhibitors as human therapeutics. In this Perspective, we discuss the attributes and limitations of recently disclosed investigational drugs targeting NaV1.7 and review evidence that, by better understanding the requirements for selectivity and target engagement, the opportunity to deliver effective analgesic medicines targeting NaV1.7 endures.


Asunto(s)
Analgésicos/química , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Bloqueadores de los Canales de Sodio/química , Analgésicos/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Canal de Sodio Activado por Voltaje NAV1.7/química , Dolor/tratamiento farmacológico , Dolor/patología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Sulfonamidas/química , Sulfonamidas/metabolismo
5.
Sci Transl Med ; 7(290): 290ra89, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26041706

RESUMEN

Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus. Selective antiviral activity was found for 80 U.S. Food and Drug Administration-approved drugs spanning multiple mechanistic classes, including selective estrogen receptor modulators, antihistamines, calcium channel blockers, and antidepressants. Results using an in vivo murine Ebola virus infection model confirmed the protective ability of several drugs, such as bepridil and sertraline. Viral entry assays indicated that most of these antiviral drugs block a late stage of viral entry. By nature of their approved status, these drugs have the potential to be rapidly advanced to clinical settings and used as therapeutic countermeasures for Ebola virus infections.


Asunto(s)
Antivirales/uso terapéutico , Aprobación de Drogas , Fiebre Hemorrágica Ebola/terapia , Sondas Moleculares , Animales , Bepridil/farmacología , Ebolavirus/efectos de los fármacos , Humanos , Ratones , Sertralina/farmacología
6.
Bioorg Med Chem Lett ; 23(11): 3257-61, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23639535

RESUMEN

A novel approach to the synthesis of substituted piperazines and their investigation as N-type calcium channel blockers is presented. A common scaffold exhibiting high activity as N-type blockers is N-substituted piperazine. Using recently developed titanium and zirconium catalysts, we describe the efficient and modular synthesis of 2,5-asymmetrically disubstituted piperazines from simple amines and alkynes. The method requires only three isolation/purification protocols and no protection/deprotection steps for the diastereoselective synthesis of 2,5-dialkylated piperazines in moderate to high yield. Screening of the synthesized piperazines for N-type channel blocking activity and selectivity shows the highest activity for a compound with a benzhydryl group on the nitrogen (position 1) and an unprotected alcohol-functionalized side chain.


Asunto(s)
Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio Tipo N/química , Piperazinas/química , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo L/química , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Catálisis , Línea Celular , Humanos , Piperazina , Piperazinas/síntesis química , Piperazinas/metabolismo , Unión Proteica , Ratas , Estereoisomerismo , Relación Estructura-Actividad , Titanio/química , Circonio/química
7.
PLoS One ; 8(2): e56265, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23441171

RESUMEN

Ebola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry. Here, we screened eleven inhibitors that target the same biosynthetic pathway as clomiphene. From this screen we identified six compounds, including U18666A, that block EBOV infection (IC(50) 1.6 to 8.0 µM) at a late stage of entry. Intriguingly, all six are cationic amphiphiles that share additional chemical features. U18666A induces phenotypes, including cholesterol accumulation in endosomes, associated with defects in Niemann-Pick C1 protein (NPC1), a late endosomal and lysosomal protein required for EBOV entry. We tested and found that all six EBOV entry inhibitors from our screen induced cholesterol accumulation. We further showed that higher concentrations of cationic amphiphiles are required to inhibit EBOV entry into cells that overexpress NPC1 than parental cells, supporting the contention that they inhibit EBOV entry in an NPC1-dependent manner. A previously reported inhibitor, compound 3.47, inhibits EBOV entry by blocking binding of the EBOV glycoprotein to NPC1. None of the cationic amphiphiles tested had this effect. Hence, multiple cationic amphiphiles (including several FDA approved agents) inhibit EBOV entry in an NPC1-dependent fashion, but by a mechanism distinct from that of compound 3.47. Our findings suggest that there are minimally two ways of perturbing NPC1-dependent pathways that can block EBOV entry, increasing the attractiveness of NPC1 as an anti-filoviral therapeutic target.


Asunto(s)
Proteínas Portadoras/metabolismo , Cationes , Ebolavirus/efectos de los fármacos , Ebolavirus/fisiología , Glicoproteínas de Membrana/metabolismo , Tensoactivos/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacología , Vías Biosintéticas/efectos de los fármacos , Cationes/química , Línea Celular , Fiebre Hemorrágica Ebola , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteína Niemann-Pick C1 , Fenotipo , Esteroides/biosíntesis , Tensoactivos/química
8.
Bioorg Med Chem Lett ; 22(12): 4153-8, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22579422

RESUMEN

We previously reported the small organic N-type calcium channel blocker NP078585 that while efficacious in animal models for pain, exhibited modest L-type calcium channel selectivity and substantial off-target inhibition against the hERG potassium channel. Structure-activity studies to optimize NP078585 preclinical properties resulted in compound 16, which maintained high potency for N-type calcium channel blockade, and possessed excellent selectivity over the hERG (~120-fold) and L-type (~3600-fold) channels. Compound 16 shows significant anti-hyperalgesic activity in the spinal nerve ligation model of neuropathic pain and is also efficacious in the rat formalin model of inflammatory pain.


Asunto(s)
Analgésicos/síntesis química , Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio Tipo N/metabolismo , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Piperazinas/síntesis química , Nervios Espinales/efectos de los fármacos , Analgésicos/farmacología , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Modelos Animales de Enfermedad , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Nervios Espinales/metabolismo , Relación Estructura-Actividad
9.
Sci Transl Med ; 4(121): 121ra19, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22344687

RESUMEN

Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels. We sought to develop high-affinity T-type specific Ca(2+) channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca(2+) channel pharmacophore and a high-throughput fluorometric Ca(2+) influx assay, we identified the T-type Ca(2+) channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca(2+) channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice.


Asunto(s)
Acetamidas/farmacología , Benzamidas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Epilepsia Tipo Ausencia/prevención & control , Tálamo/efectos de los fármacos , Humanos , Piperidinas , Tálamo/fisiología
10.
Pain ; 152(4): 833-843, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21349638

RESUMEN

Voltage-gated ion channels are implicated in pain sensation and transmission signaling mechanisms within both peripheral nociceptors and the spinal cord. Genetic knockdown and knockout experiments have shown that specific channel isoforms, including Na(V)1.7 and Na(V)1.8 sodium channels and Ca(V)3.2 T-type calcium channels, play distinct pronociceptive roles. We have rationally designed and synthesized a novel small organic compound (Z123212) that modulates both recombinant and native sodium and calcium channel currents by selectively stabilizing channels in their slow-inactivated state. Slow inactivation of voltage-gated channels can function as a brake during periods of neuronal hyperexcitability, and Z123212 was found to reduce the excitability of both peripheral nociceptors and lamina I/II spinal cord neurons in a state-dependent manner. In vivo experiments demonstrate that oral administration of Z123212 is efficacious in reversing thermal hyperalgesia and tactile allodynia in the rat spinal nerve ligation model of neuropathic pain and also produces acute antinociception in the hot-plate test. At therapeutically relevant concentrations, Z123212 did not cause significant motor or cardiovascular adverse effects. Taken together, the state-dependent inhibition of sodium and calcium channels in both the peripheral and central pain signaling pathways may provide a synergistic mechanism toward the development of a novel class of pain therapeutics.


Asunto(s)
Canales Iónicos/metabolismo , Neuralgia/tratamiento farmacológico , Nervios Espinales/patología , Acetanilidas/síntesis química , Acetanilidas/química , Acetanilidas/farmacocinética , Acetanilidas/uso terapéutico , Acrilatos/síntesis química , Acrilatos/química , Acrilatos/farmacocinética , Acrilatos/uso terapéutico , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Línea Celular Transformada , Modelos Animales de Enfermedad , Estimulación Eléctrica , Ganglios Espinales/patología , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Técnicas In Vitro , Canales Iónicos/genética , Masculino , Moduladores del Transporte de Membrana/síntesis química , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacocinética , Moduladores del Transporte de Membrana/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7 , Canal de Sodio Activado por Voltaje NAV1.8 , Inhibición Neural/efectos de los fármacos , Neuralgia/metabolismo , Neuralgia/patología , Dimensión del Dolor/métodos , Técnicas de Placa-Clamp , Piperazinas/síntesis química , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapéutico , Conejos , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Canales de Sodio/metabolismo
11.
Bioorg Med Chem Lett ; 20(4): 1378-83, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20117000

RESUMEN

A novel series of compounds derived from the previously reported N-type calcium channel blocker NP118809 (1-(4-benzhydrylpiperazin-1-yl)-3,3-diphenylpropan-1-one) is described. Extensive SAR studies resulted in compounds with IC(50) values in the range of 10-150 nM and selectivity over the L-type channels up to nearly 1200-fold. Orally administered compounds 5 and 21 exhibited both anti-allodynic and anti-hyperalgesic activity in the spinal nerve ligation model of neuropathic pain.


Asunto(s)
Compuestos de Bencidrilo/síntesis química , Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio Tipo N/efectos de los fármacos , Piperazinas/síntesis química , Administración Oral , Analgésicos/síntesis química , Analgésicos/química , Analgésicos/farmacología , Animales , Compuestos de Bencidrilo/química , Compuestos de Bencidrilo/farmacología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Piperazinas/química , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Solubilidad , Relación Estructura-Actividad , Agua/química
12.
Bioorg Med Chem Lett ; 19(22): 6467-72, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19815411

RESUMEN

The therapeutic agents flunarizine and lomerizine exhibit inhibitory activities against a variety of ion channels and neurotransmitter receptors. We have optimized their scaffolds to obtain more selective N-type calcium channel blockers. During this optimization, we discovered NP118809 and NP078585, two potent N-type calcium channel blockers which have good selectivity over L-type calcium channels. Upon intraperitoneal administration both compounds exhibit analgesic activity in a rodent model of inflammatory pain. NP118809 further exhibits a number of favorable preclinical characteristics as they relate to overall pharmacokinetics and minimal off-target activity including the hERG potassium channel.


Asunto(s)
Analgésicos/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Dolor/tratamiento farmacológico , Analgésicos/síntesis química , Animales , Sitios de Unión , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio Tipo T/efectos de los fármacos , Modelos Animales de Enfermedad , Diseño de Fármacos , Dimensión del Dolor/efectos de los fármacos , Umbral del Dolor , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
13.
Assay Drug Dev Technol ; 7(3): 266-80, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19530894

RESUMEN

T-type voltage-gated Ca(2+) channels have been implicated in contributing to a broad variety of human disorders, including pain, epilepsy, sleep disturbances, cardiac arrhythmias, and certain types of cancer. However, potent and selective T-type Ca(2+) channel modulators are not yet available for clinical use. This may in part be due to their unique biophysical properties that have delayed the development of high-throughput screening (HTS) assays for identifying blockers. One notable challenge is that at the normal resting membrane potential (V(m)) of cell lines commonly utilized for drug screening purposes, T-type Ca(2+) channels are largely inactivated and thus cannot be supported by typical formats of functional HTS assays to both evoke and quantify the Ca(2+) channel signal. Here we describe a simple method that can successfully support a fluorescence-based functional assay for compounds that modulate T-type Ca(2+)channels. The assay functions by exploiting the pore-forming properties of gramicidin to control the cellular V(m) in advance of T-type Ca(2+) channel activation. Using selected ionic conditions in the presence of gramicidin, T-type Ca(2+) channels are converted from the unavailable, inactivated state to the available, resting state, where they can be subsequently activated by application of extracellular K(+). The fidelity of the assay has been pharmacologically characterized with sample T-type Ca(2+) channel blockers whose potency has been determined by conventional manual patch-clamp techniques. This method has the potential for applications in high-throughput fluorometric imaging plate reader (FLIPR(R), Molecular Devices, Sunnyvale, CA) formats with cell lines expressing either recombinant or endogenous T-type Ca(2+) channels.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Algoritmos , Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo R/efectos de los fármacos , Canales de Calcio Tipo R/metabolismo , Canales de Calcio Tipo T/metabolismo , Proteínas de Transporte de Catión/efectos de los fármacos , Proteínas de Transporte de Catión/metabolismo , Línea Celular , ADN Complementario/biosíntesis , ADN Complementario/genética , Evaluación Preclínica de Medicamentos , Electrofisiología , Gramicidina/farmacología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Soluciones Farmacéuticas , Espectrometría de Fluorescencia
14.
NeuroRx ; 2(4): 541-53, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16489364

RESUMEN

Fundamental physiochemical features of CNS drugs are related to their ability to penetrate the blood-brain barrier affinity and exhibit CNS activity. Factors relevant to the success of CNS drugs are reviewed. CNS drugs show values of molecular weight, lipophilicity, and hydrogen bond donor and acceptor that in general have a smaller range than general therapeutics. Pharmacokinetic properties can be manipulated by the medicinal chemist to a significant extent. The solubility, permeability, metabolic stability, protein binding, and human ether-ago-go-related gene inhibition of CNS compounds need to be optimized simultaneously with potency, selectivity, and other biological parameters. The balance between optimizing the physiochemical and pharmacokinetic properties to make the best compromises in properties is critical for designing new drugs likely to penetrate the blood brain barrier and affect relevant biological systems. This review is intended as a guide to designing CNS therapeutic agents with better drug-like properties.


Asunto(s)
Barrera Hematoencefálica/fisiología , Fármacos del Sistema Nervioso Central/química , Fármacos del Sistema Nervioso Central/farmacocinética , Diseño de Fármacos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA