Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 27(2): 391-400, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17215400

RESUMEN

How the extent and time course of presynaptic inhibition depend on the action potentials of the neuron controlling the terminals is unknown. We investigated this issue in the striatum using paired recordings from cholinergic interneurons and projection neurons. Glutamatergic EPSCs were evoked in projection neurons and cholinergic interneurons by stimulation of afferent fibers in the cortex and the striatum, respectively. A single spike in a cholinergic interneuron caused significant depression of the evoked glutamatergic EPSC in 34% of projection neurons located within 100 microm and 41% of cholinergic interneurons located within 200 microm. The time course of these effects was similar in the two cases, with EPSC inhibition peaking 20-30 ms after the spike and disappearing after 40-80 ms. Maximal depression of EPSC amplitude was up to 27% in projection neurons and to 19% in cholinergic interneurons. These effects were reversibly blocked by muscarinic receptor antagonists (atropine or methoctramine), which also significantly increased baseline EPSC (evoked without a preceding spike in the cholinergic interneuron), suggesting that some tonic cholinergic presynaptic inhibition was present. This was confirmed by the fact that lowering extracellular potassium, which silenced spontaneously active cholinergic interneurons, also increased baseline EPSC amplitude, and these effects were occluded by previous application of muscarinic receptor antagonists. Collectively, these results show that a single spike in a cholinergic interneuron exerts a fast and powerful inhibitory control over the glutamatergic input to striatal neurons.


Asunto(s)
Fibras Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Interneuronas/fisiología , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Vías Nerviosas/fisiología , Ratas , Ratas Wistar
2.
Pflugers Arch ; 452(1): 7-15, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16283205

RESUMEN

The role of vasoactive intestinal polypeptide (VIP) receptors on excitable properties of neurones in slices acutely prepared from the suprachiasmatic nuclei (SCN) of wild-type (WT) and VPAC(2)-receptor-deficient (Vipr2 ( -/- )) mice was studied under voltage clamp with the use of patch-clamp recording in the whole-cell configuration. The resting membrane potential in Vipr2 ( -/- ) neurones was significantly hyperpolarised as compared to WT cells (-60+/-7 vs -72+/-6 mV, p<0.01). Bath application of 100 nM VIP or the VPAC(2) receptor agonist RO 25-1553 triggered a slow inward current in a subpopulation of WT SCN neurones; the VIP-induced current was not affected by slice incubation with 25 microM of bicuculline but disappeared completely when the cells were dialysed with CsCl-containing/K(+)-free solution. Application of VIP or RO 25-1553 to neurones from Vipr2 ( -/- ) mice did not induce currents in all cells tested. Incubation of WT slices with 100 nM VIP or RO 25-1553 resulted in inhibition of fast tetrodotoxin-sensitive sodium currents and delayed rectifier K(+) currents in most of the cells tested. This effect was completely absent in cells from Vipr2 ( -/- ) mice. We postulate that VIP receptors control excitability of SCN neurones at the postsynaptic level by direct modulation of membrane potential via inhibition of K(+) channels and by tonic inhibition of sodium and potassium voltage-gated currents.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Receptores de Péptido Intestinal Vasoactivo/fisiología , Núcleo Supraquiasmático/fisiología , Animales , Ratones , Ratones Noqueados , Neuronas/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo , Sodio/metabolismo
3.
Mol Cell Neurosci ; 28(1): 79-84, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15607943

RESUMEN

In the present study, we directly demonstrated electrical coupling between Bergmann glial cells (BG) and Purkinje neurones (PN) in acutely isolated cerebellar slices, prepared from 15 to 30 days old Sprague-Dawley rats. Electrical coupling between these two cells was identified by dual whole-cell voltage clamp, which allowed direct recording of junctional current. Whole-cell recordings from PN-PN, PN-BG and BG-BG pairs were made using Nomarski optics and infrared visualisation, which allowed precise morphological identification of cells. Junctional currents were recorded by applying hyper/and depolarising voltage sequences ranging from -120 to +40 mV (voltage step 10 mV) to one of the cells in the pair, while ion currents were measured from both cells. As has been shown before, junctional currents were frequently observed in BG-BG pairs: we found electrical coupling in 27 out of 34 pairs analysed. When the similar protocol was applied to the PN-BG pairs, junctional currents were found in 61 out of 87 pairs analysed. The electrical coupling was bi-directional as similar junctional currents were observed in PN when voltage step protocol was applied to BG. No electrical coupling was observed in PN-PN pairs (n = 21). To correlate the appearance of these currents with gap junctions we treated slices with octanol (200 microM) or halothane (500 microM)-known inhibitors of gap junction conductance. Both agents applied for 5 min resulted in a complete inhibition of junctional currents in PN-BG pair. The washout (15 min) led to a complete recovery of junctional currents after treatment with octanol; the action of halothane was irreversible. Finally, we found that filling the BG by Alexa Fluor 488 results in staining of adjacent PN (in 11 out of 23 pairs tested). We conclude therefore that cerebellar neurones and glial cells are directly connected via gap junctions.


Asunto(s)
Corteza Cerebelosa/fisiología , Uniones Comunicantes/fisiología , Neuroglía/fisiología , Células de Purkinje/fisiología , Animales , Comunicación Celular/fisiología , Corteza Cerebelosa/citología , Halotano/farmacología , Potenciales de la Membrana/fisiología , Neuroglía/citología , Octanoles/farmacología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Células de Purkinje/citología , Ratas , Ratas Sprague-Dawley , Succinimidas
4.
J Neurosci ; 23(11): 4428-36, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12805283

RESUMEN

Experience-dependent plasticity can be induced in the barrel cortex by removing all but one whisker, leading to potentiation of the neuronal response to the spared whisker. To determine whether this form of potentiation depends on synaptic plasticity, we studied long-term potentiation (LTP) and sensory-evoked potentials in the barrel cortex of alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII)T286A mutant mice. We studied three different forms of LTP induction: theta-burst stimulation, spike pairing, and postsynaptic depolarization paired with low-frequency presynaptic stimulation. None of these protocols produced LTP in alphaCaMKIIT286A mutant mice, although all three were successful in wild-type mice. To study synaptic plasticity in vivo, we measured sensory-evoked potentials in the barrel cortex and found that single-whisker experience selectively potentiated synaptic responses evoked by sensory stimulation of the spared whisker in wild types but not in alphaCaMKIIT286A mice. These results demonstrate that alphaCaMKII autophosphorylation is required for synaptic plasticity in the neocortex, whether induced by a variety of LTP induction paradigms or by manipulation of sensory experience, thereby strengthening the case that the two forms of plasticity are related.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Estimulación Eléctrica/métodos , Potenciales Evocados/fisiología , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Mutación , Neocórtex/enzimología , Técnicas de Placa-Clamp , Fosforilación , Estimulación Física , Privación Sensorial/fisiología , Corteza Somatosensorial/enzimología , Corteza Somatosensorial/fisiología , Ritmo Teta , Vibrisas/fisiología
5.
Neuron ; 34(5): 807-20, 2002 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12062026

RESUMEN

Extracellular signal-regulated kinases (ERK1 and 2) are synaptic signaling components necessary for several forms of learning. In mice lacking ERK1, we observe a dramatic enhancement of striatum-dependent long-term memory, which correlates with a facilitation of long-term potentiation in the nucleus accumbens. At the cellular level, we find that ablation of ERK1 results in a stimulus-dependent increase of ERK2 signaling, likely due to its enhanced interaction with the upstream kinase MEK. Consistently, such activity change is responsible for the hypersensitivity of ERK1 mutant mice to the rewarding properties of morphine. Our results reveal an unexpected complexity of ERK-dependent signaling in the brain and a critical regulatory role for ERK1 in the long-term adaptive changes underlying striatum-dependent behavioral plasticity and drug addiction.


Asunto(s)
Cuerpo Estriado/enzimología , Potenciación a Largo Plazo/genética , Memoria/fisiología , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Núcleo Accumbens/enzimología , Terminales Presinápticos/enzimología , Transmisión Sináptica/genética , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/enzimología , Animales , Reacción de Prevención/fisiología , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Trastornos del Conocimiento/enzimología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/patología , Cuerpo Estriado/anomalías , Cuerpo Estriado/citología , Femenino , Hipocampo/citología , Hipocampo/enzimología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Morfina/farmacología , Actividad Motora/genética , Mutación/genética , Red Nerviosa/anomalías , Red Nerviosa/citología , Red Nerviosa/enzimología , Malformaciones del Sistema Nervioso/enzimología , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Núcleo Accumbens/anomalías , Núcleo Accumbens/citología , Terminales Presinápticos/ultraestructura , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...