Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 19(1): 622-635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491929

RESUMEN

Heterogeneous nuclear ribonucleoproteins (hnRNP) function in RNA processing, have RNA-recognition motifs (RRMs) and intrinsically disordered, low-complexity domains (LCDs). While RRMs are drivers of RNA binding, there is only limited knowledge about the RNA interaction by the LCD of some hnRNPs. Here, we show that the LCD of hnRNPA2 interacts with RNA via an embedded Tyr/Gly-rich region which is a disordered RNA-binding motif. RNA binding is maintained upon mutating tyrosine residues to phenylalanines, but abrogated by mutating to alanines, thus we term the RNA-binding region 'F/YGG motif'. The F/YGG motif can bind a broad range of structured (e.g. tRNA) and disordered (e.g. polyA) RNAs, but not rRNA. As the F/YGG otif can also interact with DNA, we consider it a general nucleic acid-binding motif. hnRNPA2 LCD can form dense droplets, by liquid-liquid phase separation (LLPS). Their formation is inhibited by RNA binding, which is mitigated by salt and 1,6-hexanediol, suggesting that both electrostatic and hydrophobic interactions feature in the F/YGG motif. The D290V mutant also binds RNA, which interferes with both LLPS and aggregation thereof. We found homologous regions in a broad range of RNA- and DNA-binding proteins in the human proteome, suggesting that the F/YGG motif is a general nucleic acid-interaction motif.


Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas , ARN , ADN , Proteínas de Unión al ADN/metabolismo , Humanos , ARN/genética , ARN/metabolismo
2.
Front Mol Neurosci ; 14: 686995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434087

RESUMEN

Mutations in the FUS gene cause amyotrophic lateral sclerosis (ALS-FUS). However, the exact pathogenic mechanism of mutant fused in sarcoma (FUS) protein is not completely understood. FUS is an RNA binding protein (RBP) localized predominantly in the nucleus, but ALS-linked FUS mutations can affect its nuclear localization signal impairing its import into the nucleus. This mislocalization to the cytoplasm facilitates FUS aggregation in cytoplasmic inclusions. Therapies targeting post translational modifications are rising as new treatments for ALS, in particular acetylation which could have a role in the dynamics of RBPs. Research using histone deacetylase (HDAC) inhibitors in FUS-ALS models showed that HDACs can influence cytoplasmic FUS localization. Inhibition of HDACs could promote acetylation of the FUS RNA binding domain (RRM) and altering its RNA interactions resulting in FUS maintenance in the nucleus. In addition, acetylation of FUS RRMs might also favor or disfavor its incorporation into pathological inclusions. In this review, we summarize and discuss the evidence for the potential role of HDACs in the context of FUS-ALS and we propose a new hypothesis based on this overview.

3.
Bioinformatics ; 37(20): 3473-3479, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-33983381

RESUMEN

MOTIVATION: Proteins able to undergo liquid-liquid phase separation (LLPS) in vivo and in vitro are drawing a lot of interest, due to their functional relevance for cell life. Nevertheless, the proteome-scale experimental screening of these proteins seems unfeasible, because besides being expensive and time-consuming, LLPS is heavily influenced by multiple environmental conditions such as concentration, pH and temperature, thus requiring a combinatorial number of experiments for each protein. RESULTS: To overcome this problem, we propose a neural network model able to predict the LLPS behavior of proteins given specified experimental conditions, effectively predicting the outcome of in vitro experiments. Our model can be used to rapidly screen proteins and experimental conditions searching for LLPS, thus reducing the search space that needs to be covered experimentally. We experimentally validate Droppler's prediction on the TAR DNA-binding protein in different experimental conditions, showing the consistency of its predictions. AVAILABILITY AND IMPLEMENTATION: A python implementation of Droppler is available at https://bitbucket.org/grogdrinker/droppler. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

4.
Biomolecules ; 11(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917983

RESUMEN

Aggregates of TAR DNA-binding protein (TDP-43) are a hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Although TDP-43 aggregates are an undisputed pathological species at the end stage of these diseases, the molecular changes underlying the initiation of aggregation are not fully understood. The aim of this study was to investigate how phase separation affects self-aggregation and aggregation seeded by pre-formed aggregates of either the low-complexity domain (LCD) or its short aggregation-promoting regions (APRs). By systematically varying the physicochemical conditions, we observed that liquid-liquid phase separation (LLPS) promotes spontaneous aggregation. However, we noticed less efficient seeded aggregation in phase separating conditions. By analyzing a broad range of conditions using the Hofmeister series of buffers, we confirmed that stabilizing hydrophobic interactions prevail over destabilizing electrostatic forces. RNA affected the cooperativity between LLPS and aggregation in a "reentrant" fashion, having the strongest positive effect at intermediate concentrations. Altogether, we conclude that conditions which favor LLPS enhance the subsequent aggregation of the TDP-43 LCD with complex dependence, but also negatively affect seeding kinetics.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Extracción Líquido-Líquido , Agregado de Proteínas , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/síntesis química , Péptidos/química , Péptidos/metabolismo , Dominios Proteicos , ARN/química , ARN/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Electricidad Estática
5.
EMBO J ; 40(7): e106177, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33694180

RESUMEN

TDP-43 is the major component of pathological inclusions in most ALS patients and in up to 50% of patients with frontotemporal dementia (FTD). Heterozygous missense mutations in TARDBP, the gene encoding TDP-43, are one of the common causes of familial ALS. In this study, we investigate TDP-43 protein behavior in induced pluripotent stem cell (iPSC)-derived motor neurons from three ALS patients with different TARDBP mutations, three healthy controls and an isogenic control. TARDPB mutations induce several TDP-43 changes in spinal motor neurons, including cytoplasmic mislocalization and accumulation of insoluble TDP-43, C-terminal fragments, and phospho-TDP-43. By generating iPSC lines with allele-specific tagging of TDP-43, we find that mutant TDP-43 initiates the observed disease phenotypes and has an altered interactome as indicated by mass spectrometry. Our findings also indicate that TDP-43 proteinopathy results in a defect in mitochondrial transport. Lastly, we show that pharmacological inhibition of histone deacetylase 6 (HDAC6) restores the observed TDP-43 pathologies and the axonal mitochondrial motility, suggesting that HDAC6 inhibition may be an interesting therapeutic target for neurodegenerative disorders linked to TDP-43 pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Transporte Axonal , Proteínas de Unión al ADN/genética , Histona Desacetilasa 6/metabolismo , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/genética , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células Madre Pluripotentes Inducidas/citología , Mitocondrias/metabolismo , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Mutación Missense
7.
Commun Biol ; 4(1): 77, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469149

RESUMEN

Understanding the kinetics, thermodynamics, and molecular mechanisms of liquid-liquid phase separation (LLPS) is of paramount importance in cell biology, requiring reproducible methods for studying often severely aggregation-prone proteins. Frequently applied approaches for inducing LLPS, such as dilution of the protein from an urea-containing solution or cleavage of its fused solubility tag, often lead to very different kinetic behaviors. Here we demonstrate that at carefully selected pH values proteins such as the low-complexity domain of hnRNPA2, TDP-43, and NUP98, or the stress protein ERD14, can be kept in solution and their LLPS can then be induced by a jump to native pH. This approach represents a generic method for studying the full kinetic trajectory of LLPS under near native conditions that can be easily controlled, providing a platform for the characterization of physiologically relevant phase-separation behavior of diverse proteins.


Asunto(s)
Proteínas de Unión al ADN/química , Extracción Líquido-Líquido/métodos , Fenómenos Biofísicos/fisiología , Proteínas de Unión al ADN/metabolismo , Cinética , Dominios Proteicos/fisiología , Termodinámica
8.
Br J Pharmacol ; 178(6): 1353-1372, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32726472

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. ALS patients suffer from a progressive loss of motor neurons, leading to respiratory failure within 3 to 5 years after diagnosis. Available therapies only slow down the disease progression moderately or extend the lifespan by a few months. Epigenetic hallmarks have been linked to the disease, creating an avenue for potential therapeutic approaches. Interference with one class of epigenetic enzymes, histone deacetylases, has been shown to affect neurodegeneration in many preclinical models. Consequently, it is crucial to improve our understanding about histone deacetylases and their inhibitors in (pre)clinical models of ALS. We conclude that selective inhibitors with high tolerability and safety and sufficient blood-brain barrier permeability will be needed to interfere with both epigenetic and non-epigenetic targets of these enzymes. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Epigenómica , Histona Desacetilasas , Humanos , Neuronas Motoras
9.
J Mol Cell Biol ; 13(1): 15-28, 2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32976566

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disease selectively affecting motor neurons, leading to progressive paralysis. Although most cases are sporadic, ∼10% are familial. Similar proteins are found in aggregates in sporadic and familial ALS, and over the last decade, research has been focused on the underlying nature of this common pathology. Notably, TDP-43 inclusions are found in almost all ALS patients, while FUS inclusions have been reported in some familial ALS patients. Both TDP-43 and FUS possess 'low-complexity domains' (LCDs) and are considered as 'intrinsically disordered proteins', which form liquid droplets in vitro due to the weak interactions caused by the LCDs. Dysfunctional 'liquid-liquid phase separation' (LLPS) emerged as a new mechanism linking ALS-related proteins to pathogenesis. Here, we review the current state of knowledge on ALS-related gene products associated with a proteinopathy and discuss their status as LLPS proteins. In addition, we highlight the therapeutic potential of targeting LLPS for treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas Intrínsecamente Desordenadas/metabolismo , Agregación Patológica de Proteínas/patología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Autofagia/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/antagonistas & inhibidores , Proteínas Intrínsecamente Desordenadas/genética , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Mutación , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Agregación Patológica de Proteínas/tratamiento farmacológico , Agregación Patológica de Proteínas/genética , Pliegue de Proteína/efectos de los fármacos , Proteína FUS de Unión a ARN/antagonistas & inhibidores , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...