Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 175(6): e14084, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148200

RESUMEN

Isoflavonoids are mostly produced by legumes although little is known about why and how legumes are able to regulate the biosynthesis of these particular compounds. Understanding the role of potential regulatory genes of the isoflavonoid biosynthetic pathway constitutes an important topic of research. The LORE1 mutation of the gene encoding the transcription factor MYB36 allowed the identification of this gene as a regulator of isoflavonoid biosynthesis in Lotus japonicus plants. The levels of several isoflavonoid compounds were considerably lower in two lines of Ljmyb36 mutant plants compared to the WT. In addition, we found that Ljmyb36 mutant plants were significantly smaller and showed a substantial decrease in the chlorophyll levels under normal growth conditions. The analysis of plants subjected to different types of abiotic stress conditions further revealed that mutant plants presented a higher sensitivity than WT plants, indicating that the MYB36 transcription factor is also involved in the stress response in L. japonicus plants.


Asunto(s)
Lotus , Lotus/genética , Lotus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas/genética
2.
Front Plant Sci ; 6: 760, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442073

RESUMEN

This paper was aimed to investigate the possible implications of the lack of plastidic glutamine synthetase (GS2) in phenolic metabolism during stress responses in the model legume Lotus japonicus. Important changes in the transcriptome were detected in a GS2 mutant called Ljgln2-2, compared to the wild type, in response to two separate stress conditions, such as drought or the result of the impairment of the photorespiratory cycle. Detailed transcriptomic analysis showed that the biosynthesis of phenolic compounds was affected in the mutant plants in these two different types of stress situations. For this reason, the genes and metabolites related to this metabolic route were further investigated using a combined approach of gene expression analysis and metabolite profiling. A high induction of the expression of several genes for the biosynthesis of different branches of the phenolic biosynthetic pathway was detected by qRT-PCR. The extent of induction was always higher in Ljgln2-2, probably reflecting the higher stress levels present in this genotype. This was paralleled by accumulation of several kaempferol and quercetine glycosides, some of them described for the first time in L. japonicus, and of high levels of the isoflavonoid vestitol. The results obtained indicate that the absence of GS2 affects different aspects of phenolic metabolism in L. japonicus plants in response to stress.

3.
J Exp Bot ; 65(19): 5557-66, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24948681

RESUMEN

This review summarizes the most recent results obtained in the analysis of two important metabolic pathways involved in the release of internal sources of ammonium in the model legume Lotus japonicus: photorespiratory metabolism and asparagine breakdown mediated by aparaginase (NSE). The use of photorespiratory mutants deficient in plastidic glutamine synthetase (GS2) enabled us to investigate the transcriptomics and metabolomic changes associated with photorespiratory ammonium accumulation in this plant. The results obtained indicate the existence of a coordinate regulation of genes involved in photorespiratory metabolism. Other types of evidence illustrate the multiple interconnections existing among the photorespiratory pathway and other processes such as intermediate metabolism, nodule function, and secondary metabolism in this plant, all of which are substantially affected in GS2-deficient mutants because of the impairment of the photorespiratory cycle. Finally, the importance of asparagine metabolism in L. japonicus is highlighted because of the fact that asparagine constitutes the vast majority of the reduced nitrogen translocated between different organs of this plant. The different types of NSE enzymes and genes which are present in L. japonicus are described. There is a particular focus on the most abundant K(+)-dependent LjNSE1 isoform and how TILLING mutants were used to demonstrate by reverse genetics the importance of this particular isoform in plant growth and seed production.


Asunto(s)
Compuestos de Amonio/metabolismo , Asparagina/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/metabolismo , Lotus/metabolismo , Nitrógeno/metabolismo , Transporte Biológico , Respiración de la Célula , Glutamato-Amoníaco Ligasa/genética , Luz , Lotus/genética , Lotus/efectos de la radiación , Estructura Molecular , Mutación , Plastidios/enzimología , Potasio/metabolismo , Genética Inversa , Semillas/genética , Semillas/metabolismo , Semillas/efectos de la radiación , Transcriptoma
4.
Z Naturforsch C J Biosci ; 67(1-2): 58-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22486042

RESUMEN

The new natural polyamine conjugate 1N,5N,10N,14N-tetracoumaroyl spermine (tetracoumaroyl spermine) recently isolated from chamomile (Matricaria chamomilla L.) flower heads is applicable for the treatment of several human disorders such as depression and anxiety. High variability in the level of tetracoumaroyl spermine is found in commercial tisanes. Accumulation of tetracoumaroyl spermine was tested during floral development, and nitrogen deficiency was chosen as its putative limiting environmental factor. It was observed that tetracoumaroyl spermine is present mainly in tubular flowers, reaching its maximal content during the 3rd phase of flowering when the corollae of tubular flowers start to open. The later observed decrease could result from a release of pollen that also contains a considerable amount of tetracoumaroyl spermine. It is likely that tetracoumaroyl spermine plays an important role in pollen development, and so, despite overall N-deficiency in the plants, tetracoumaroyl spermine is accumulated at the same or even higher rate than in the flowers of the N-sufficient control.


Asunto(s)
Alquenos/metabolismo , Compuestos Aza/metabolismo , Flores , Matricaria/metabolismo , Nitrógeno/metabolismo , Matricaria/crecimiento & desarrollo
5.
J Plant Physiol ; 166(14): 1479-87, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19409655

RESUMEN

Aluminum toxicity is an important stress factor in acid soils. Growth, respiration and permeability properties of root cells were studied in five cultivars of Lotus corniculatus subjected to aluminum (Al) or low pH stress. The cultivars showed significant differences in root elongation under stress conditions, which correlated with changes in membrane potential (E(M)) of root cortical cells. A pH drop from 5.5 to 4.0 resulted in significant membrane depolarization and root growth inhibition. The strongest inhibition was observed in cv. São Gabriel (33.6%) and least in cv. UFRGS (25.8%). Application of an extremely high Al concentration (2mM) stopped the root growth in cv. INIA Draco, while inhibition in cv. UFRGS reached only 75%. The E(M) values of cortical cells of Lotus roots varied between -115 and -144mV. Treatment with 250microM of AlCl(3) (pH 4) resulted in rapid membrane depolarization. The extent of the membrane depolarization ranged between 51mV (cv. UFGRS) and 16mV (cv. INIA Draco). The membrane depolarization was followed by a loss of K(+) from Al-treated roots (2mM Al) and resulted in a decrease of the diffusion potential (E(D)). The total amount of K(+) in Al-treated roots dropped from 31.4 to 16.8micromolg(-1) FW in sensitive cv. INIA Draco, or from 26.1 to 22.7micromolg(-1) FW in tolerant cv. UFGRS. The rate of root respiration under control conditions as well as under Al treatment was higher in cv. INIA Draco than in cv. UFRGS. Al-induced inhibition of root respiration was 21-34% of the control.


Asunto(s)
Compuestos de Aluminio/toxicidad , Cloruros/toxicidad , Lotus/efectos de los fármacos , Lotus/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Estrés Fisiológico/fisiología , Cloruro de Aluminio , Respiración de la Célula/efectos de los fármacos , Concentración de Iones de Hidrógeno , Lotus/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Potasio/metabolismo
6.
J Exp Bot ; 56(417): 1741-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15911564

RESUMEN

This paper summarizes some recent advances in the understanding of nitrate assimilation in the model legume Lotus japonicus. First, different types of experimental evidence are presented that emphasize the importance of the root in the nitrate-reducing assimilatory processes in this plant. Secondly, the main results from an ethyl methanesulphonate mutagenesis programme are presented. In this programme, chlorate-resistant and photorespiratory mutants were produced and characterized. The phenotype of one particular chlorate-resistant mutant suggested the importance of a low-affinity nitrate transport system for growth of L. japonicus plants under nitrate nutrition. The phenotype of photorespiratory mutants, affected in all forms of plastid glutamine synthetase in leaves, roots, and nodules, indicated that plastid glutamine synthetase was not required for primary nitrate assimilation nor for the symbiotic associations of the plant (nodulation, mycorrhization), provided photorespiration was suppressed. However, the phenotype of these mutants confirmed that plastid glutamine synthetase was required for the reassimilation of ammonium released by photorespiration. Finally, different aspects of the relationship between nitrate assimilation and osmotic stress in L. japonicus are also discussed, with specific reference to the biosynthesis of proline as an osmolyte.


Asunto(s)
Lotus/metabolismo , Nitratos/metabolismo , Transporte Biológico Activo , Lotus/genética , Mutación , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...