Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Neural Netw ; 19(3): 381-96, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18334359

RESUMEN

Suppose for a given classification or function approximation (FA) problem data are collected using l sensors. From the output of the ith sensor, ni features are extracted, thereby generating p = sigma li = 1 ni features, so for the task we have X subset Rp as input data along with their corresponding outputs or class labels Y subset Rc. Here, we propose two connectionist schemes that can simultaneously select the useful sensors and learn the relation between X and Y. One scheme is based on the radial basis function (RBF) network and the other uses the multilayered perceptron (MLP) network. Both schemes are shown to possess the universal approximation property. Simulations show that the methods can detect the bad/derogatory groups of features online and can eliminate the effect of these bad features while doing the FA or classification task.


Asunto(s)
Almacenamiento y Recuperación de la Información , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Humanos , Sistemas de Información , Sistemas en Línea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA