Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Neurosci ; 43(39): 6697-6711, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37620159

RESUMEN

Stimulation-evoked signals are starting to be used as biomarkers to indicate the state and health of brain networks. The human limbic network, often targeted for brain stimulation therapy, is involved in emotion and memory processing. Previous anatomic, neurophysiological, and functional studies suggest distinct subsystems within the limbic network (Rolls, 2015). Studies using intracranial electrical stimulation, however, have emphasized the similarities of the evoked waveforms across the limbic network. We test whether these subsystems have distinct stimulation-driven signatures. In eight patients (four male, four female) with drug-resistant epilepsy, we stimulated the limbic system with single-pulse electrical stimulation. Reliable corticocortical evoked potentials (CCEPs) were measured between hippocampus and the posterior cingulate cortex (PCC) and between the amygdala and the anterior cingulate cortex (ACC). However, the CCEP waveform in the PCC after hippocampal stimulation showed a unique and reliable morphology, which we term the "limbic Hippocampus-Anterior nucleus of the thalamus-Posterior cingulate, HAP-wave." This limbic HAP-wave was visually distinct and separately decoded from the CCEP waveform in ACC after amygdala stimulation. Diffusion MRI data show that the measured end points in the PCC overlap with the end points of the parolfactory cingulum bundle rather than the parahippocampal cingulum, suggesting that the limbic HAP-wave may travel through fornix, mammillary bodies, and the anterior nucleus of the thalamus (ANT). This was further confirmed by stimulating the ANT, which evoked the same limbic HAP-wave but with an earlier latency. Limbic subsystems have unique stimulation-evoked signatures that may be used in the future to help network pathology diagnosis.SIGNIFICANCE STATEMENT The limbic system is often compromised in diverse clinical conditions, such as epilepsy or Alzheimer's disease, and characterizing its typical circuit responses may provide diagnostic insight. Stimulation-evoked waveforms have been used in the motor system to diagnose circuit pathology. We translate this framework to limbic subsystems using human intracranial stereo EEG (sEEG) recordings that measure deeper brain areas. Our sEEG recordings describe a stimulation-evoked waveform characteristic to the memory and spatial subsystem of the limbic network that we term the "limbic HAP-wave." The limbic HAP-wave follows anatomic white matter pathways from hippocampus to thalamus to the posterior cingulum and shows promise as a distinct biomarker of signaling in the human brain memory and spatial limbic network.


Asunto(s)
Núcleos Talámicos Anteriores , Epilepsia , Humanos , Masculino , Femenino , Sistema Límbico/fisiología , Electroencefalografía , Potenciales Evocados/fisiología , Estimulación Eléctrica
2.
Epilepsia ; 64(6): 1627-1639, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060170

RESUMEN

OBJECTIVE: The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS: In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS: Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE: Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.


Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios de Cohortes , Convulsiones/diagnóstico , Electroencefalografía , Monitoreo Ambulatorio
3.
Epilepsia ; 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35441703

RESUMEN

This study describes a generalized cross-patient seizure-forecasting approach using recurrent neural networks with ultra-long-term subcutaneous EEG (sqEEG) recordings. Data from six patients diagnosed with refractory epilepsy and monitored with an sqEEG device were used to develop a generalized algorithm for seizure forecasting using long short-term memory (LSTM) deep-learning classifiers. Electrographic seizures were identified by a board-certified epileptologist. One-minute data segments were labeled as preictal or interictal based on their relationship to confirmed seizures. Data were separated into training and testing data sets, and to compensate for the unbalanced data ratio in training, noise-added copies of preictal data segments were generated to expand the training data set. The mean and standard deviation (SD) of the training data were used to normalize all data, preserving the pseudo-prospective nature of the analysis. Different architecture classifiers were trained and tested using a leave-one-patient-out cross-validation method, and the area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate the performance classifiers. The importance of each input signal was evaluated using a leave-one-signal-out method with repeated training and testing for each classifier. Cross-patient classifiers achieved performance significantly better than chance in four of the six patients and an overall mean AUC of 0.602 ± 0.126 (mean ± SD). A time in warning of 37.386% ± 5.006% (mean ± std) and sensitivity of 0.691 ± 0.068 (mean ± std) were observed for patients with better than chance results. Analysis of input channels showed a significant contribution (p < .05) by the Fourier transform of signals channels to overall classifier performance. The relative contribution of input signals varied among patients and architectures, suggesting that the inclusion of all signals contributes to robustness in a cross-patient classifier. These early results show that it is possible to forecast seizures training with data from different patients using two-channel ultra-long-term sqEEG.

4.
Epilepsia ; 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395101

RESUMEN

OBJECTIVE: One of the most disabling aspects of living with chronic epilepsy is the unpredictability of seizures. Cumulative research in the past decades has advanced our understanding of the dynamics of seizure risk. Technological advances have recently made it possible to record pertinent biological signals, including electroencephalogram (EEG), continuously. We aimed to assess whether patient-specific seizure forecasting is possible using remote, minimally invasive ultra-long-term subcutaneous EEG. METHODS: We analyzed a two-center cohort of ultra-long-term subcutaneous EEG recordings, including six patients with drug-resistant focal epilepsy monitored for 46-230 days with median 18 h/day of recorded data, totaling >11 000 h of EEG. Total electrographic seizures identified by visual review ranged from 12 to 36 per patient. Three candidate subject-specific long short-term memory network deep learning classifiers were trained offline and pseudoprospectively on preictal (1 h before) and interictal (>1 day from seizures) EEG segments. Performance was assessed relative to a random predictor. Periodicity of the final forecasts was also investigated with autocorrelation. RESULTS: Depending on each architecture, significant forecasting performance was achieved in three to five of six patients, with overall mean area under the receiver operating characteristic curve of .65-.74. Significant forecasts showed sensitivity ranging from 64% to 80% and time in warning from 10.9% to 44.4%. Overall, the output of the forecasts closely followed patient-specific circadian patterns of seizure occurrence. SIGNIFICANCE: This study demonstrates proof-of-principle for the possibility of subject-specific seizure forecasting using a minimally invasive subcutaneous EEG device capable of ultra-long-term at-home recordings. These results are encouraging for the development of a prospective seizure forecasting trial with minimally invasive EEG.

5.
Sci Rep ; 11(1): 21935, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754043

RESUMEN

The ability to forecast seizures minutes to hours in advance of an event has been verified using invasive EEG devices, but has not been previously demonstrated using noninvasive wearable devices over long durations in an ambulatory setting. In this study we developed a seizure forecasting system with a long short-term memory (LSTM) recurrent neural network (RNN) algorithm, using a noninvasive wrist-worn research-grade physiological sensor device, and tested the system in patients with epilepsy in the field, with concurrent invasive EEG confirmation of seizures via an implanted recording device. The system achieved forecasting performance significantly better than a random predictor for 5 of 6 patients studied, with mean AUC-ROC of 0.80 (range 0.72-0.92). These results provide the first clear evidence that direct seizure forecasts are possible using wearable devices in the ambulatory setting for many patients with epilepsy.


Asunto(s)
Aprendizaje Profundo , Memoria , Convulsiones/diagnóstico , Dispositivos Electrónicos Vestibles , Adulto , Estudios de Cohortes , Electroencefalografía , Femenino , Predicción , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/fisiopatología , Muñeca , Adulto Joven
6.
Front Neurol ; 12: 704060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335457

RESUMEN

The unpredictability of epileptic seizures exposes people with epilepsy to potential physical harm, restricts day-to-day activities, and impacts mental well-being. Accurate seizure forecasters would reduce the uncertainty associated with seizures but need to be feasible and accessible in the long-term. Wearable devices are perfect candidates to develop non-invasive, accessible forecasts but are yet to be investigated in long-term studies. We hypothesized that machine learning models could utilize heart rate as a biomarker for well-established cycles of seizures and epileptic activity, in addition to other wearable signals, to forecast high and low risk seizure periods. This feasibility study tracked participants' (n = 11) heart rates, sleep, and step counts using wearable smartwatches and seizure occurrence using smartphone seizure diaries for at least 6 months (mean = 14.6 months, SD = 3.8 months). Eligible participants had a diagnosis of refractory epilepsy and reported at least 20 seizures (mean = 135, SD = 123) during the recording period. An ensembled machine learning and neural network model estimated seizure risk either daily or hourly, with retraining occurring on a weekly basis as additional data was collected. Performance was evaluated retrospectively against a rate-matched random forecast using the area under the receiver operating curve. A pseudo-prospective evaluation was also conducted on a held-out dataset. Of the 11 participants, seizures were predicted above chance in all (100%) participants using an hourly forecast and in ten (91%) participants using a daily forecast. The average time spent in high risk (prediction time) before a seizure occurred was 37 min in the hourly forecast and 3 days in the daily forecast. Cyclic features added the most predictive value to the forecasts, particularly circadian and multiday heart rate cycles. Wearable devices can be used to produce patient-specific seizure forecasts, particularly when biomarkers of seizure and epileptic activity cycles are utilized.

7.
Front Hum Neurosci ; 15: 702605, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381344

RESUMEN

Intracranial electroencephalographic (iEEG) recordings from patients with epilepsy provide distinct opportunities and novel data for the study of co-occurring psychiatric disorders. Comorbid psychiatric disorders are very common in drug-resistant epilepsy and their added complexity warrants careful consideration. In this review, we first discuss psychiatric comorbidities and symptoms in patients with epilepsy. We describe how epilepsy can potentially impact patient presentation and how these factors can be addressed in the experimental designs of studies focused on the electrophysiologic correlates of mood. Second, we review emerging technologies to integrate long-term iEEG recording with dense behavioral tracking in naturalistic environments. Third, we explore questions on how best to address the intersection between epilepsy and psychiatric comorbidities. Advances in ambulatory iEEG and long-term behavioral monitoring technologies will be instrumental in studying the intersection of seizures, epilepsy, psychiatric comorbidities, and their underlying circuitry.

8.
Front Neurol ; 12: 704170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393981

RESUMEN

Epilepsy is one of the most common neurological disorders, and it affects almost 1% of the population worldwide. Many people living with epilepsy continue to have seizures despite anti-epileptic medication therapy, surgical treatments, and neuromodulation therapy. The unpredictability of seizures is one of the most disabling aspects of epilepsy. Furthermore, epilepsy is associated with sleep, cognitive, and psychiatric comorbidities, which significantly impact the quality of life. Seizure predictions could potentially be used to adjust neuromodulation therapy to prevent the onset of a seizure and empower patients to avoid sensitive activities during high-risk periods. Long-term objective data is needed to provide a clearer view of brain electrical activity and an objective measure of the efficacy of therapeutic measures for optimal epilepsy care. While neuromodulation devices offer the potential for acquiring long-term data, available devices provide very little information regarding brain activity and therapy effectiveness. Also, seizure diaries kept by patients or caregivers are subjective and have been shown to be unreliable, in particular for patients with memory-impairing seizures. This paper describes the design, architecture, and development of the Mayo Epilepsy Personal Assistant Device (EPAD). The EPAD has bi-directional connectivity to the implanted investigational Medtronic Summit RC+STM device to implement intracranial EEG and physiological monitoring, processing, and control of the overall system and wearable devices streaming physiological time-series signals. In order to mitigate risk and comply with regulatory requirements, we developed a Quality Management System (QMS) to define the development process of the EPAD system, including Risk Analysis, Verification, Validation, and protocol mitigations. Extensive verification and validation testing were performed on thirteen canines and benchtop systems. The system is now under a first-in-human trial as part of the US FDA Investigational Device Exemption given in 2018 to study modulated responsive and predictive stimulation using the Mayo EPAD system and investigational Medtronic Summit RC+STM in ten patients with non-resectable dominant or bilateral mesial temporal lobe epilepsy. The EPAD system coupled with an implanted device capable of EEG telemetry represents a next-generation solution to optimizing neuromodulation therapy.

9.
Brain Commun ; 3(2): fcab102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131643

RESUMEN

Routine scalp EEG is essential in the clinical diagnosis and management of epilepsy. However, a normal scalp EEG (based on expert visual review) recorded from a patient with epilepsy can cause delays in diagnosis and clinical care delivery. Here, we investigated whether normal EEGs might contain subtle electrophysiological clues of epilepsy. Specifically, we investigated (i) whether there are indicators of abnormal brain electrophysiology in normal EEGs of epilepsy patients, and (ii) whether such abnormalities are modulated by the side of the brain generating seizures in focal epilepsy. We analysed awake scalp EEG recordings of age-matched groups of 144 healthy individuals and 48 individuals with drug-resistant focal epilepsy who had normal scalp EEGs. After preprocessing, using a bipolar montage of eight channels, we extracted the fraction of spectral power in the alpha band (8-13 Hz) relative to a wide band of 0.5-40 Hz within 10-s windows. We analysed the extracted features for (i) the extent to which people with drug-resistant focal epilepsy differed from healthy subjects, and (ii) whether differences within the drug-resistant focal epilepsy patients were related to the hemisphere generating seizures. We then used those differences to classify whether an EEG is likely to have been recorded from a person with drug-resistant focal epilepsy, and if so, the epileptogenic hemisphere. Furthermore, we tested the significance of these differences while controlling for confounders, such as acquisition system, age and medications. We found that the fraction of alpha power is generally reduced (i) in drug-resistant focal epilepsy compared to healthy controls, and (ii) in right-handed drug-resistant focal epilepsy subjects with left hemispheric seizures compared to those with right hemispheric seizures, and that the differences are most prominent in the frontal and temporal regions. The fraction of alpha power yielded area under curve values of 0.83 in distinguishing drug-resistant focal epilepsy from healthy and 0.77 in identifying the epileptic hemisphere in drug-resistant focal epilepsy patients. Furthermore, our results suggest that the differences in alpha power are greater when compared with differences attributable to acquisition system differences, age and medications. Our findings support that EEG-based measures of normal brain function, such as the normalized spectral power of alpha activity, may help identify patients with epilepsy even when an EEG does not contain any epileptiform activity, recorded seizures or other abnormalities. Although alpha abnormalities are unlikely to be disease-specific, we propose that such abnormalities may provide a higher pre-test probability for epilepsy when an individual being screened for epilepsy has a normal EEG on visual assessment.

10.
J Neural Eng ; 18(5)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33730713

RESUMEN

Objective. The detection of seizures using wearable devices would improve epilepsy management, but reliable detection of seizures in an ambulatory environment remains challenging, and current studies lack concurrent validation of seizures using electroencephalography (EEG) data.Approach. An adaptively trained long-short-term memory deep neural network was developed and trained using a modest number of seizure data sets from wrist-worn devices. Transfer learning was used to adapt a classifier that was initially trained on intracranial electroencephalography (iEEG) signals to facilitate classification of non-EEG physiological datasets comprising accelerometry, blood volume pulse, skin electrodermal activity, heart rate, and temperature signals. The algorithm's performance was assessed with and without pre-training on iEEG signals and transfer learning. To assess the performance of the seizure detection classifier using long-term ambulatory data, wearable devices were used for multiple months with an implanted neurostimulator capable of recording iEEG signals, which provided independent electrographic seizure detections that were reviewed by a board-certified epileptologist.Main results. For 19 motor seizures from 10 in-hospital patients, the algorithm yielded a mean area under curve (AUC), a sensitivity, and an false alarm rate per day (FAR/day) of 0.98, 0.93, and 2.3, respectively. Additionally, for eight seizures with probable motor semiology from two ambulatory patients, the classifier achieved a mean AUC of 0.97 and an FAR of 2.45 events/day at a sensitivity of 0.9. For all seizure types in the ambulatory setting, the classifier had a mean AUC of 0.82 with a sensitivity of 0.47 and an FAR of 7.2 events/day.Significance. The performance of the algorithm was evaluated using motor and non-motor seizures during in-hospital and ambulatory use. The classifier was able to detect multiple types of motor and non-motor seizures, but performed significantly better on motor seizures.


Asunto(s)
Memoria a Corto Plazo , Dispositivos Electrónicos Vestibles , Algoritmos , Electroencefalografía , Humanos , Aprendizaje Automático , Convulsiones/diagnóstico
11.
Epilepsia ; 61 Suppl 1: S25-S35, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32497269

RESUMEN

Noninvasive wearable devices have great potential to aid the management of epilepsy, but these devices must have robust signal quality, and patients must be willing to wear them for long periods of time. Automated machine learning classification of wearable biosensor signals requires quantitative measures of signal quality to automatically reject poor-quality or corrupt data segments. In this study, commercially available wearable sensors were placed on patients with epilepsy undergoing in-hospital or in-home electroencephalographic (EEG) monitoring, and healthy volunteers. Empatica E4 and Biovotion Everion were used to record accelerometry (ACC), photoplethysmography (PPG), and electrodermal activity (EDA). Byteflies Sensor Dots were used to record ACC and PPG, the Activinsights GENEActiv watch to record ACC, and Epitel Epilog to record EEG data. PPG and EDA signals were recorded for multiple days, then epochs of high-quality, marginal-quality, or poor-quality data were visually identified by reviewers, and reviewer annotations were compared to automated signal quality measures. For ACC, the ratio of spectral power from 0.8 to 5 Hz to broadband power was used to separate good-quality signals from noise. For EDA, the rate of amplitude change and prevalence of sharp peaks significantly differentiated between good-quality data and noise. Spectral entropy was used to assess PPG and showed significant differences between good-, marginal-, and poor-quality signals. EEG data were evaluated using methods to identify a spectral noise cutoff frequency. Patients were asked to rate the usability and comfort of each device in several categories. Patients showed a significant preference for the wrist-worn devices, and the Empatica E4 device was preferred most often. Current wearable devices can provide high-quality data and are acceptable for routine use, but continued development is needed to improve data quality, consistency, and management, as well as acceptability to patients.


Asunto(s)
Acelerometría/instrumentación , Epilepsia , Respuesta Galvánica de la Piel/fisiología , Monitoreo Ambulatorio/instrumentación , Fotopletismografía/instrumentación , Dispositivos Electrónicos Vestibles , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Prioridad del Paciente , Procesamiento de Señales Asistido por Computador , Adulto Joven
12.
IEEE J Transl Eng Health Med ; 6: 2500112, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30310759

RESUMEN

Brain stimulation has emerged as an effective treatment for a wide range of neurological and psychiatric diseases. Parkinson's disease, epilepsy, and essential tremor have FDA indications for electrical brain stimulation using intracranially implanted electrodes. Interfacing implantable brain devices with local and cloud computing resources have the potential to improve electrical stimulation efficacy, disease tracking, and management. Epilepsy, in particular, is a neurological disease that might benefit from the integration of brain implants with off-the-body computing for tracking disease and therapy. Recent clinical trials have demonstrated seizure forecasting, seizure detection, and therapeutic electrical stimulation in patients with drug-resistant focal epilepsy. In this paper, we describe a next-generation epilepsy management system that integrates local handheld and cloud-computing resources wirelessly coupled to an implanted device with embedded payloads (sensors, intracranial EEG telemetry, electrical stimulation, classifiers, and control policy implementation). The handheld device and cloud computing resources can provide a seamless interface between patients and physicians, and realtime intracranial EEG can be used to classify brain state (wake/sleep, preseizure, and seizure), implement control policies for electrical stimulation, and track patient health. This system creates a flexible platform in which low demand analytics requiring fast response times are embedded in the implanted device and more complex algorithms are implemented in offthebody local and distributed cloud computing environments. The system enables tracking and management of epileptic neural networks operating over time scales ranging from milliseconds to months.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...