Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Front Nutr ; 11: 1335979, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166127

RESUMEN

Background: Some dietary patterns and dietary components have an important role in preventing and helping to improve patients' quality of life of individuals with Mild Cognitive Impairment (MCI) and dementia. In Mexico, it is unknown what the dietary patterns are among older adults with MCI and dementia. We aimed to identify the dietary patterns of older adults with MCI and dementia living in Yucatan, Mexico. Methods: A cross-sectional study was carried out among 39 patients as controls and 34 individuals as cases (MCI and dementia). A food frequency questionnaire collected diet information, anthropometric and clinical parameters, and lifestyle characteristics. The dietary patterns were evaluated through Partial Least-Squares Discriminant Analysis (PLS-DA). Results: The food groups that showed discrimination between groups and were classified into the dietary patterns of MCI and dementia individuals were "pastries and cookies," "soups," and "legumes." The dietary pattern of older adults without cognitive impairment was characterized by "nuts and seeds," "candies," "vegetables," "coffee and tea," and "water." The consumption of "pastries and cookies" showed an increasing correlation with serum insulin levels (r = 0.36, p = 0.01), and "soups" showed an inverse correlation with total cholesterol levels (r = -0.36, p = 0.02) in patients with MCI and dementia. In controls, there is a positive correlation between the consumption of "nuts and seeds" (r = 0.333, p = 0.01) and "vegetables" (r = 0.32, p = 0.02) with levels of urea; "coffee and tea" showed a positive association with levels of insulin (r = 0.378, p = 0.05). Conclusion: The dietary pattern of individuals with MCI and dementia has some nutritional deficiencies. Including an adequate intake of vegetables, fruits, and protein could improve the quality of life of subjects living with these conditions in Yucatan, Mexico.

2.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062958

RESUMEN

The post-nutritional intervention modulation of miRNA expression has been previously investigated; however, post-acute dietary-ingestion-related miRNA expression dynamics in individuals with obesity and insulin resistance (IR) are unknown. We aimed to determine the acute effects of protein ingestion from different dietary sources on the postprandial metabolic response, amino acid levels, and circulating miRNA expression in adults with obesity and IR. This clinical trial included adults with obesity and IR who consumed (1) animal-source protein (AP; calcium caseinate) or (2) vegetable-source protein (VP; soy protein isolate). Glycaemic, insulinaemic, and glucagon responses, amino acid levels, and exosomal microRNAs isolated from plasma were analysed. Post-AP ingestion, the area under the curve (AUC) of insulin (p = 0.04) and the plasma concentrations of branched-chain (p = 0.007) and gluconeogenic (p = 0.01) amino acids increased. The effects of different types of proteins on the concentration of miRNAs were evaluated by measuring their plasma circulating levels. Compared with the baseline, the AP group presented increased circulating levels of miR-27a-3p, miR-29b-3p, and miR-122-5p (p < 0.05). Subsequent analysis over time at 0, 30, and 60 min revealed the same pattern and differences between treatments. We demonstrated that a single dose of dietary protein has acute effects on hormonal and metabolic regulation and increases exosomal miRNA expression in individuals with obesity and IR.


Asunto(s)
Aminoácidos , MicroARN Circulante , Proteínas en la Dieta , Resistencia a la Insulina , Obesidad , Periodo Posprandial , Humanos , Proteínas en la Dieta/administración & dosificación , Masculino , Obesidad/sangre , Obesidad/dietoterapia , Obesidad/genética , Obesidad/metabolismo , Femenino , Adulto , MicroARN Circulante/sangre , MicroARN Circulante/genética , Aminoácidos/sangre , Persona de Mediana Edad , Insulina/sangre , Glucemia/metabolismo , MicroARNs/sangre , MicroARNs/genética
3.
Nutrients ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004098

RESUMEN

Postmenopausal women are at an increased risk of developing metabolic syndrome (MetS) due to hormonal changes and lifestyle factors. Gut microbiota (GM) have been linked to the development of MetS, and they are influenced by dietary habits. However, the interactions between dietary patterns (DP) and the GM of postmenopausal women, as well as their influence on MetS, still need to be understood. The present study evaluated the DP and microbiota composition of postmenopausal Mexican women with MetS and those in a control group. Diet was assessed using a food frequency questionnaire, and the GM were profiled using 16S rRNA gene sequencing. Greater adherence to a "healthy" DP was significantly associated with lower values of MetS risk factors. GM diversity was diminished in women with MetS, and it was negatively influenced by an "unhealthy" DP. Moreover, a higher intake of fats and proteins, as well as lower amounts of carbohydrates, showed a reduction in some of the short-chain fatty acid-producing genera in women with MetS, as well as increases in some harmful bacteria. Furthermore, Roseburia abundance was positively associated with dietary fat and waist circumference, which may explain 7.5% of the relationship between this macronutrient and MetS risk factors. These findings suggest that GM and diet interactions are important in the development of MetS in postmenopausal Mexican women.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Humanos , Femenino , Síndrome Metabólico/metabolismo , Posmenopausia , ARN Ribosómico 16S/genética , Dieta
4.
Medicina (Kaunas) ; 59(10)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37893503

RESUMEN

Background and Objectives: Metabolic-dysfunction-associated steatotic liver disease or MASLD is the main cause of chronic liver diseases in children, and it is estimated to affect 35% of children living with obesity. This study aimed to identify metabolic phenotypes associated with two advanced stages of MASLD (hepatic steatosis and hepatic steatosis plus fibrosis) in Mexican children with obesity. Materials and Methods: This is a cross-sectional analysis derived from a randomized clinical trial conducted in children and adolescents with obesity aged 8 to 16 years. Anthropometric and biochemical data were measured, and targeted metabolomic analyses were carried out using mass spectrometry. Liver steatosis and fibrosis were estimated using transient elastography (Fibroscan® Echosens, Paris, France). Three groups were studied: a non-MASLD group, an MASLD group, and a group for MASLD + fibrosis. A partial least squares discriminant analysis (PLS-DA) was performed to identify the discrimination between the study groups and to visualize the differences between their heatmaps; also, Variable Importance Projection (VIP) plots were graphed. A VIP score of >1.5 was considered to establish the importance of metabolites and biochemical parameters that characterized each group. Logistic regression models were constructed considering VIP scores of >1.5, and the receiver operating characteristic (ROC) curves were estimated to evaluate different combinations of variables. Results: The metabolic MASLD phenotype was associated with increased concentrations of ALT and decreased arginine, glycine, and acylcarnitine (AC) AC5:1, while MASLD + fibrosis, an advanced stage of MASLD, was associated with a phenotype characterized by increased concentrations of ALT, proline, and alanine and a decreased Matsuda Index. Conclusions: The metabolic MASLD phenotype changes as this metabolic dysfunction progresses. Understanding metabolic disturbances in MASLD would allow for early identification and the development of intervention strategies focused on limiting the progression of liver damage in children and adolescents.


Asunto(s)
Hígado Graso , Adolescente , Humanos , Niño , Estudios Transversales , Obesidad/complicaciones , Cirrosis Hepática/complicaciones , Fenotipo
5.
Front Nutr ; 10: 1231873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637952

RESUMEN

Introduction: Food Exchange Lists (FELs) are a user-friendly tool developed to help individuals aid healthy eating habits and follow a specific diet plan. Given the rapidly increasing number of new products or access to new foods, one of the biggest challenges for FELs is being outdated. Supervised machine learning algorithms could be a tool that facilitates this process and allows for updated FELs-the present study aimed to generate an algorithm to predict food classification and calculate the equivalent portion. Methods: Data mining techniques were used to generate the algorithm, which consists of processing and analyzing the information to find patterns, trends, or repetitive rules that explain the behavior of the data in a food database after performing this task. It was decided to approach the problem from a vector formulation (through 9 nutrient dimensions) that led to proposals for classifiers such as Spherical K-Means (SKM), and by developing this idea, it was possible to smooth the limits of the classifier with the help of a Multilayer Perceptron (MLP) which were compared with two other algorithms of machine learning, these being Random Forest and XGBoost. Results: The algorithm proposed in this study could classify and calculate the equivalent portion of a single or a list of foods. The algorithm allows the categorization of more than one thousand foods with a confidence level of 97% at the first three places. Also, the algorithm indicates which foods exceed the limits established in sodium, sugar, and/or fat content and show their equivalents. Discussion: Accurate and robust FELs could improve implementation and adherence to the recommended diet. Compared with manual categorization and calculation, machine learning approaches have several advantages. Machine learning reduces the time needed for manual food categorization and equivalent portion calculation of many food products. Since it is possible to access food composition databases of various populations, our algorithm could be adapted and applied in other databases, offering an even greater diversity of regional products and foods. In conclusion, machine learning is a promising method for automation in generating FELs. This study provides evidence of a large-scale, accurate real-time processing algorithm that can be useful for designing meal plans tailored to the foods consumed by the population. Our model allowed us not only to distinguish and classify foods within a group or subgroup but also to perform the calculation of an equivalent food. As a neural network, this model could be trained with other food bases and thus improve its predictive capacity. Although the performance of the SKM model was lower compared to other types of classifiers, our model allows selecting an equivalent food not from a group previously classified by machine learning but with a fully interpretable algorithm such as cosine similarity for comparing food.

6.
Nutrients ; 15(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299553

RESUMEN

Pecans (Carya illinoinensis) are considered a functional food due to the high content of polyunsaturated fatty acids, dietary fiber and polyphenols. To determine the effect of whole pecans (WP) or a pecan polyphenol (PP) extract on the development of metabolic abnormalities in mice fed a high-fat (HF) diet, we fed C57BL/6 mice with a Control diet (7% fat), HF diet (23% fat), HF containing 30% WP or an HF diet supplemented with 3.6 or 6 mg/g of PP for 18 weeks. Supplementation of an HF diet with WP or PP reduced fat mass, serum cholesterol, insulin and HOMA-IR by 44, 40, 74 and 91%, respectively, compared to the HF diet. They also enhanced glucose tolerance by 37%, prevented pancreatic islet hypertrophy, and increased oxygen consumption by 27% compared to the HF diet. These beneficial effects were associated with increased thermogenic activity in brown adipose tissue, mitochondrial activity and AMPK activation in skeletal muscle, reduced hypertrophy and macrophage infiltration of subcutaneous and visceral adipocytes, reduced hepatic lipid content and enhanced metabolic signaling. Moreover, the microbial diversity of mice fed WP or PP was higher than those fed HF, and associated with lower circulating lipopolysaccharides (~83-95%). Additionally, a 4-week intervention study with the HF 6PP diet reduced the metabolic abnormalities of obese mice. The present study demonstrates that WP or a PP extract prevented obesity, liver steatosis and diabetes by reducing dysbiosis, inflammation, and increasing mitochondrial content and energy expenditure. Pecan polyphenols were mainly condensed tannin and ellagic acid derivatives including ellagitannins as determined by LC-MS. Herein we also propose a model for the progression of the HF diet-mediated metabolic disorder based on early and late events, and the possible molecular targets of WP and PP extract in preventive and intervention strategies. The body surface area normalization equation gave a conversion equivalent to a daily human intake dose of 2101-3502 mg phenolics that can be obtained from 110-183 g pecan kernels/day (22-38 whole pecans) or 21.6-36 g defatted pecan flour/day for an average person of 60 kg. This work lays the groundwork for future clinical studies.


Asunto(s)
Carya , Diabetes Mellitus , Hígado Graso , Ratones , Humanos , Animales , Dieta Alta en Grasa/efectos adversos , Polifenoles/farmacología , Polifenoles/metabolismo , Disbiosis/prevención & control , Disbiosis/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/prevención & control , Hígado Graso/prevención & control , Hígado/metabolismo , Inflamación/prevención & control , Inflamación/metabolismo , Diabetes Mellitus/metabolismo , Hipertrofia , Metabolismo Energético
7.
J Alzheimers Dis ; 94(2): 425-439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37302035

RESUMEN

BACKGROUND: Nutrition has relevant role in the pathogenesis of dementia. However, in Latin American Countries (LAC), it is unknown which type of diet the subjects with dementia and cognitive dysfunction have. OBJECTIVE: The main purpose of this study was to determine micro- and macronutrients and food frequency intake among the LAC population with mild cognitive impairment (MCI) and dementia. METHODS: A systematic review using PubMed, Cochrane, Lilacs, and Scielo databases. Energy intake as well as micro- and macronutrients intake were analyzed using a random-effect model and presented in a forest plot. RESULTS: Nine articles were included, an estimated energy intake of 1598.47 kcal (95% CI 1351.07-1845.88) was obtained. A daily consumption of 73.64 g/day (95% CI 64.07-83.2) of protein; 262.17 g/day (95% CI 214.51-309.93) of carbohydrates, and 57.91 g/day (95% CI 49.16-66.66) of fats were reported. A micronutrients daily intake consumption of 201.35µg/day of vitamin B9 (95% CI 125.32-277.38); 5.61µg/day of vitamin B12 (95% CI 2.53-8.70), and 139.67 mg/day of vitamin C (95% CI 59.33-220.02). Mineral intake of 637.32 mg/day of calcium (95% CI 288.54-986.11) and 9 mg/day of iron (95% CI 2.28-15.71) was obtained. A low intake of fruits and vegetables was found. CONCLUSION: Individuals with MCI and dementia from LAC have a nutritional deficiency characterized by a lower intake of fruits and vegetables, a high consumption of carbohydrates and protein, adequate fats intake and vitamins B12, vitamin C, and iron consumption, but a low intake of vitamin B9 and calcium.


Asunto(s)
Disfunción Cognitiva , Demencia , Humanos , América Latina/epidemiología , Calcio , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/complicaciones , Vitaminas , Ácido Fólico , Ingestión de Energía , Vitamina B 12 , Ácido Ascórbico , Ingestión de Alimentos , Demencia/epidemiología , Demencia/etiología , Hierro
8.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175691

RESUMEN

Obesity causes systemic inflammation, hepatic and renal damage, as well as gut microbiota dysbiosis. Alternative vegetable sources rich in polyphenols are known to prevent or delay the progression of metabolic abnormalities during obesity. Vachellia farnesiana (VF) is a potent source of polyphenols with antioxidant and anti-inflammatory activities with potential anti-obesity effects. We performed an in vivo preventive or an interventional experimental study in mice and in vitro experiments with different cell types. In the preventive study, male C57BL/6 mice were fed with a Control diet, a high-fat diet, or a high-fat diet containing either 0.1% methyl gallate, 10% powdered VFP, or 0.5%, 1%, or 2% of a polyphenolic extract (PE) derived from VFP (Vachellia farnesiana pods) for 14 weeks. In the intervention study, two groups of mice were fed for 14 weeks with a high-fat diet and then one switched to a high-fat diet with 10% powdered VFP for ten additional weeks. In the in vitro studies, we evaluated the effect of a VFPE (Vachellia farnesiana polyphenolic extract) on glucose-stimulated insulin secretion in INS-1E cells or of naringenin or methyl gallate on mitochondrial activity in primary hepatocytes and C2C12 myotubes. VFP or a VFPE increased whole-body energy expenditure and mitochondrial activity in skeletal muscle; prevented insulin resistance, hepatic steatosis, and kidney damage; exerted immunomodulatory effects; and reshaped fecal gut microbiota composition in mice fed a high-fat diet. VFPE decreased insulin secretion in INS-1E cells, and its isolated compounds naringenin and methyl gallate increased mitochondrial activity in primary hepatocytes and C2C12 myotubes. In conclusion VFP or a VFPE prevented systemic inflammation, insulin resistance, and hepatic and renal damage in mice fed a high-fat diet associated with increased energy expenditure, improved mitochondrial function, and reduction in insulin secretion.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Masculino , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Prebióticos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Extractos Vegetales/farmacología , Inflamación/tratamiento farmacológico
9.
Biomedicines ; 11(2)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36831031

RESUMEN

BACKGROUND: M1 macrophages involved in pro-inflammatory processes can be induced by low-density lipoproteins (LDL), giving rise to foam cells. In the atheroma plaque, it has been identified that males present more advanced lesions associated with infiltration. Therefore, our study aims to investigate sex-related changes in the transcriptome of M1 macrophages during the internalization process of LDL particles. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy male and female subjects were separated using Hystopaque, and monocytes were isolated from PBMCs using a positive selection of CD14+ cells. Cells were stimulated with LDL 10 µg/mL, and the transcriptional profile of M1 macrophages performed during LDL internalization was determined using a Clariom D platform array. RESULTS: Chromosome Y influences the immune system and inflammatory responses in males expressing 43% of transcripts in response to LDL treatment. Males and females share 15 transcripts, where most correspond to non-coding elements involved in oxidative stress and endothelial damage. CONCLUSIONS: During LDL internalization, male monocyte-derived M1 macrophages display more marked proinflammatory gene expression. In contrast, female M1 macrophages display a more significant number of markers associated with cell damage.

10.
Nutrients ; 14(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36145054

RESUMEN

Metabolic syndrome (MetS) is a group of several metabolic conditions predisposing to chronic diseases. Individuals diagnosed with MetS are physiologically heterogeneous, with significant sex-specific differences. Therefore, we aimed to investigate the potential sex-specific serum modifications of amino acids and acylcarnitines (ACs) and their relationship with MetS in the Mexican population. This study included 602 participants from the Health Workers Cohort Study. Forty serum metabolites were analyzed using a targeted metabolomics approach. Multivariate regression models were used to test associations of clinical and biochemical parameters with metabolomic profiles. Our findings showed a serum amino acid signature (citrulline and glycine) and medium-chain ACs (AC14:1, AC10, and AC18:10H) associated with MetS. Glycine and AC10 were specific metabolites representative of discrimination according to sex-dependent MetS. In addition, we found that glycine and short-chain ACs (AC2, AC3, and AC8:1) are associated with age-dependent MetS. We also reported a significant correlation between body fat and metabolites associated with sex-age-dependent MetS. In conclusion, the metabolic profile varies by MetS status, and these differences are sex-age-dependent in the Mexican population.


Asunto(s)
Síndrome Metabólico , Carnitina/análogos & derivados , Citrulina , Estudios de Cohortes , Femenino , Glicina , Humanos , Masculino , Metabolómica
11.
Nutr Metab Cardiovasc Dis ; 31(11): 3210-3218, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34511290

RESUMEN

BACKGROUND AND AIM: Circulating amino acids are modified by sex, body mass index (BMI) and insulin resistance (IR). However, whether the presence of genetic variants in branched-chain amino acid (BCAA) catabolic enzymes modifies circulating amino acids is still unknown. Thus, we determined the frequency of two genetic variants, one in the branched-chain aminotransferase 2 (BCAT2) gene (rs11548193), and one in the branched-chain ketoacid dehydrogenase (BCKDH) gene (rs45500792), and elucidated their impact on circulating amino acid levels together with clinical, anthropometric and biochemical parameters. METHODS AND RESULTS: We performed a cross-sectional comparative study in which we recruited 1612 young adults (749 women and 863 men) aged 19.7 ± 2.1 years and with a BMI of 24.9 ± 4.7 kg/m2. Participants underwent clinical evaluation and provided blood samples for DNA extraction and biochemical analysis. The single nucleotide polymorphisms (SNPs) were determined by allelic discrimination using real-time polymerase chain reaction (PCR). The frequencies of the less common alleles were 15.2 % for BCAT2 and 9.83 % for BCKDH. The subjects with either the BCAT2 or BCKDH SNPs displayed no differences in the evaluated parameters compared with subjects homozygotes for the most common allele at each SNP. However, subjects with both SNPs had higher body weight, BMI, blood pressure, glucose, and circulating levels of aspartate, isoleucine, methionine, and proline than the subjects homozygotes for the most common allele (P < 0.05, One-way ANOVA). CONCLUSION: Our findings suggest that the joint presence of both the BCAT2 rs11548193 and BCKDH rs45500792 SNPs induces metabolic alterations that are not observed in subjects without either SNP.


Asunto(s)
3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , Aminoácidos/sangre , Antígenos de Histocompatibilidad Menor/genética , Polimorfismo de Nucleótido Simple , Proteínas Gestacionales/genética , Transaminasas/genética , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , Adolescente , Factores de Edad , Biomarcadores/sangre , Glucemia/análisis , Presión Sanguínea , Índice de Masa Corporal , Estudios Transversales , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Homocigoto , Humanos , Masculino , México , Antígenos de Histocompatibilidad Menor/metabolismo , Fenotipo , Proteínas Gestacionales/metabolismo , Transaminasas/metabolismo , Adulto Joven
12.
Metabolites ; 11(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34564420

RESUMEN

Recent evidence shows that obesity correlates negatively with bone mass. However, traditional anthropometric measures such as body mass index could not discriminate visceral adipose tissue from subcutaneous adipose tissue. The visceral adiposity index (VAI) is a reliable sex-specified indicator of visceral adipose distribution and function. Thus, we aimed to identify metabolomic profiles associated with VAI and low bone mineral density (BMD). A total of 602 individuals from the Health Workers Cohort Study were included. Forty serum metabolites were measured using the targeted metabolomics approach, and multivariate regression models were used to test associations of metabolomic profiles with anthropometric, clinical, and biochemical parameters. The analysis showed a serum amino acid signature composed of glycine, leucine, arginine, valine, and acylcarnitines associated with high VAI and low BMD. In addition, we found a sex-dependent VAI in pathways related to primary bile acid biosynthesis, branched-chain amino acids, and the biosynthesis of pantothenate and coenzyme A (CoA). In conclusion, a metabolic profile differs by VAI and BMD status, and these changes are gender-dependent.

13.
Microorganisms ; 9(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34442841

RESUMEN

Mycobacterium tuberculosis infection has three discernible outcomes: active tuberculosis, latent tuberculosis, or clearance of the bacterium. The outcome of the infection depends on the interaction of the bacterium, the immune system, and the microbiome of the host. The current study uses 16S rRNA sequencing to determine the diversity and composition of the respiratory microbiome of drug-resistant and drug-sensitive tuberculosis patients as well as healthy volunteers. Tuberculosis patients exhibited increased microbial diversity and differentially abundant bacteria than healthy volunteers. Compositional differences were also observed when comparing drug-sensitive or -resistant tuberculosis patients. Finally, we defined and assessed the differences in the core sputum microbiota between tuberculosis patients and healthy volunteers. Our observations collectively suggest that in sputum, Mycobacterium tuberculosis infection is related to altered bacterial diversity and compositional differences of core members of the microbiome, with potential implications for the bacterial pulmonary ecosystem's stability and function.

14.
Clin Nutr ESPEN ; 44: 254-262, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34330475

RESUMEN

BACKGROUND & AIMS: Overweight and obesity in reproductive-age women hasten the development of insulin resistance and increase risk for deterioration of pregnancy metabolism. These pregnancy-associated metabolic changes are similar to those of the metabolic syndrome. Thus, some metabolic flexibility must allow appropriate adaptation to the metabolic load that pregnancy imposes. We evaluated metabolic flexibility during uncomplicated pregnancy in women with pre-gestational normal weight or overweight. METHODS: In 20 women with singleton pregnancies, pre-pregnancy BMI was categorized as normal-weight (Nw) or overweight (Ow). The women were seen quarterly, and fasting and postprandial blood samples were collected at each visit. Indirect fasting and/postprandial calorimetry was performed to evaluate metabolic flexibility (Δrespiratory quotient (RQ) = RQpostprandial - RQfasting). RESULTS: In the first trimester, metabolic flexibility was lower in the Ow group compared to the Nw group (0.031 ± 0.0131 vs 0.077 ± 0.018, respectively) without a statistically significant difference (p = 0.053). In the second trimester, the Ow group was significantly more flexible than the Nw group (0.190 ± 0.016 vs 0.077 ± 0.015, respectively (p = 0.004)). For the third trimester, the Ow and Nw groups did not differ in metabolic flexibility (0.074 ± 0.013 vs 0.087 ± 0.021, respectively) (p = 0.40). The most influential variables for metabolic flexibility during pregnancy were lactate, leptin, ß-hydroxybutyrate, glycerol, aromatic amino acids, medium and long chain acylcarnitine's. CONCLUSIONS: Our findings indicate that metabolic flexibility changes throughout pregnancy, independently of pre-pregnancy BMI. These changes maintain metabolic homeostasis between the mother and foetus, allowing for appropriate adjustments during pregnancy.


Asunto(s)
Resistencia a la Insulina , Sobrepeso , Adaptación Fisiológica , Índice de Masa Corporal , Femenino , Humanos , Obesidad , Embarazo
15.
Pediatr Infect Dis J ; 40(8): 704-709, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34250970

RESUMEN

BACKGROUND: Acute diarrhea is the second leading cause of preventable mortality and morbidity in children worldwide. This study aimed to identify the main pathogens associated with acute diarrhea and to describe changes in gut microbiota in Mexican children. METHODS: This single-center observational study included 30 children (6 months to 5 years old) with acute diarrhea who were referred to the Instituto Nacional de Pediatría of Mexico City and 15 healthy volunteers (control group). Stool samples at day 0 (D0) and day 15 (D15) were collected for identification of microorganisms (reverse transcriptase-polymerase chain reaction analyses with xTAG gastrointestinal pathogen panel multiplex assay) and microbiota analysis (16S gene amplification sequencing). Prescription decisions were made by the treating clinician. RESULTS: The main pathogens identified were norovirus and Campylobacter jejuni (20% each). The majority of patients (n = 24) were prescribed Saccharomyces boulardii CNCM I-745 for treatment of acute diarrhea. Diarrheic episodes resolved within 1 week of treatment. Compared with D15 and control samples, D0 samples showed significantly lower alpha diversity and a clear shift in overall composition (beta diversity). Alpha diversity was significantly increased in S. boulardii-treated group between D0 and D15 to a level similar to that of control group. CONCLUSIONS: In these children, acute diarrhea was accompanied by significant alterations in gut microbiota. S. boulardii CNCM I-745 treatment may facilitate gut microbiota restoration in children with acute diarrhea, mostly through improvements in alpha diversity.


Asunto(s)
Diarrea/microbiología , Microbioma Gastrointestinal , Enfermedad Aguda , Preescolar , Disbiosis/microbiología , Femenino , Humanos , Lactante , Masculino , México , Reacción en Cadena de la Polimerasa Multiplex , Probióticos/uso terapéutico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces boulardii
16.
Mol Med ; 27(1): 50, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34030623

RESUMEN

OBJECTIVE: To evaluate the taxonomic composition of the gut microbiome in gout patients with and without tophi formation, and predict bacterial functions that might have an impact on urate metabolism. METHODS: Hypervariable V3-V4 regions of the bacterial 16S rRNA gene from fecal samples of gout patients with and without tophi (n = 33 and n = 25, respectively) were sequenced and compared to fecal samples from 53 healthy controls. We explored predictive functional profiles using bioinformatics in order to identify differences in taxonomy and metabolic pathways. RESULTS: We identified a microbiome characterized by the lowest richness and a higher abundance of Phascolarctobacterium, Bacteroides, Akkermansia, and Ruminococcus_gnavus_group genera in patients with gout without tophi when compared to controls. The Proteobacteria phylum and the Escherichia-Shigella genus were more abundant in patients with tophaceous gout than in controls. Fold change analysis detected nine genera enriched in healthy controls compared to gout groups (Bifidobacterium, Butyricicoccus, Oscillobacter, Ruminococcaceae_UCG_010, Lachnospiraceae_ND2007_group, Haemophilus, Ruminococcus_1, Clostridium_sensu_stricto_1, and Ruminococcaceae_UGC_013). We found that the core microbiota of both gout groups shared Bacteroides caccae, Bacteroides stercoris ATCC 43183, and Bacteroides coprocola DSM 17136. These bacteria might perform functions linked to one-carbon metabolism, nucleotide binding, amino acid biosynthesis, and purine biosynthesis. Finally, we observed differences in key bacterial enzymes involved in urate synthesis, degradation, and elimination. CONCLUSION: Our findings revealed that taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Gota/metabolismo , Metagenoma , Metagenómica , Ácido Úrico/metabolismo , Biodiversidad , Biología Computacional/métodos , Gota/etiología , Gota/patología , Humanos , Metagenómica/métodos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas
17.
Food Funct ; 12(7): 3206-3218, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33877245

RESUMEN

Irritable Bowel Syndrome (IBS) is a functional gastrointestinal disorder characterized by abdominal pain and altered bowel habit. IBS patients report that FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols) diet induce or exacerbate their symptoms. It has been reported that low-FODMAP diet (LFD) improves the symptoms in 50%-80% of IBS patients. We aimed to identify IBS responders and non-responders' patients to LFD by determining baseline fecal microbial composition, sequencing the 16S rRNA gene V3-V4 region. Thirty-two participants with IBS were included, 29 women (90.62%) and three men (9.37%), and instructed to follow a four-week LFD, Visual Analogue Scale for IBS was used to assess intervention response. Twenty-two participants were responders (68.75%), and ten were non-responders (31.25%). Differential abundance analysis of Amplicon Sequence Variant (ASVs), before LFD, identified Prevotella 9 and Veillonella genus in responder group, and Barnesiella, Paraprevotella, Bifidobacterium and Ruminococcus 1 genus in non-responder group. After LFD, differentially abundant ASVs were only identified in R, belonging to Veilonella, Butyrivibrio, and 5 ASVs belonging to Ruminiclostridium 6 genus. Linear Discriminant Analysis (LDA), was used to classify patients by responsiveness, considering baseline abundance of 5 bacterial genera, LDA accuracy model was 96.87%, correctly classifying 95.45% of in responder group and 100% and non-responder group. In conclusion, bacterial biomarkers are useful to classify IBS individuals by responsiveness to LFD.


Asunto(s)
Dieta , Carbohidratos de la Dieta/administración & dosificación , Fermentación , Microbioma Gastrointestinal/fisiología , Síndrome del Colon Irritable/microbiología , Polímeros/administración & dosificación , Adulto , Bacterias/clasificación , Disacáridos , Heces/microbiología , Femenino , Humanos , Síndrome del Colon Irritable/dietoterapia , Masculino , México , Persona de Mediana Edad , Monosacáridos , Oligosacáridos
18.
Eur J Nutr ; 60(5): 2435-2447, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33145643

RESUMEN

PURPOSE: We compared the effect of diets with different amounts and sources of dietary protein on insulin sensitivity (IS) in subjects with obesity and insulin resistance (IR). METHODS: Eighty subjects with obesity (BMI ≥ 30 kg/m2) and IR (Matsuda index < 4.3 and HOMA-IR ≥ 2.5) over 18 years old were randomized to four groups for a one-month period: a normal protein diet (< 20%) with a predominance of animal protein (Animal NP) or vegetable protein (Vegetable NP) and a high-protein diet (25-30%) with a predominance of animal protein (Animal HP) or vegetable protein (Vegetable HP). Baseline and final measurements of body weight, body composition, biochemical parameters, blood pressure (BP), resting energy expenditure and plasma amino acid profiles were performed. RESULTS: Body weight, BMI and waist circumference decreased in all groups. Interestingly, the IS improved more in the Animal HP (Matsuda index; 1.39 vs 2.58, P = 0.003) and in the Vegetable HP groups (Matsuda index; 1.44 vs 3.14, P < 0.0001) after one month. The fat mass, triglyceride levels, C-reactive protein levels and the leptin/adiponectin index decreased; while, the skeletal muscle mass increased in the Animal and Vegetable HP groups. The BP decreased in all groups except the Animal NP group. CONCLUSION: Our study demonstrates that a high-protein hypocaloric diets improves IS by 60-90% after one month in subjects with obesity and IR, regardless of weight loss and the source of protein, either animal or vegetable. TRIAL REGISTRATION: The trial is registered at clinicaltrials.gov (NCT03627104), August 13, 2018.


Asunto(s)
Resistencia a la Insulina , Adolescente , Índice de Masa Corporal , Dieta Reductora , Proteínas en la Dieta , Humanos , Obesidad , Pérdida de Peso
19.
Microorganisms ; 8(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105628

RESUMEN

The effect of microbiota composition and its health on bone tissue is a novel field for research. However, their associations with bone mineral density (BMD) have not been established in postmenopausal women. The present study investigates the relation of diet, the microbiota composition, and the serum metabolic profile in postmenopausal women with normal-BMD or with low-BMD. Ninety-two Mexican postmenopausal women were classified into normal-BMD (n = 34) and low-BMD (n = 58). The V4 hypervariable region was sequenced using the Miseq platform. Serum vitamin D was determined by chemiluminescence immunoassay. Serum concentrations of acyl-carnitines and amino acids were determined by electrospray tandem mass spectrometry. Diet was assessed by a food frequency questionnaire. The low-BMD group had fewer observed species, higher abundance of γ-Proteobacteria, lower consumption of lycopene, and lower concentrations of leucine, valine, and tyrosine compared with the normal-BMD group. These amino acids correlated positively with the abundance of Bacteroides. Lycopene consumption positively correlated with Oscillospira and negatively correlated with Pantoea genus abundance. Finally, the intestinal microbiota of women with vitamin D deficiency was related to Erysipelotrichaceae and Veillonellaceae abundance compared to the vitamin D non-deficient group. Associations mediated by the gut microbiota between diet and circulating metabolites with low-BMD were identified.

20.
Nutrients ; 12(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971775

RESUMEN

BACKGROUND: Magnesium is a mineral that modulates several physiological processes. However, its relationship with intestinal microbiota has been scarcely studied. Therefore, this study aimed to assess the role of dietary magnesium content to modulate the intestinal microbiota of Wistar male rats. METHODS: Rats were randomly assigned one of three diets: a control diet (C-Mg; 1000 mg/kg), a low magnesium content diet (L-Mg; 60 mg/kg), and a high magnesium content diet (H-Mg; 6000 mg/kg), for two weeks. After treatment, fecal samples were collected. Microbiota composition was assessed by sequencing the V3-V4 hypervariable region. RESULTS: The C-Mg and L-Mg groups had more diversity than H-Mg group. CF231, SMB53, Dorea, Lactobacillus and Turibacter were enriched in the L-Mg group. In contrast, the phyla Proteobacteria, Parabacteroides, Butyricimonas, and Victivallis were overrepresented in the H-Mg group. PICRUSt analysis indicated that fecal microbiota of the L-Mg group were encoded with an increased abundance of metabolic pathways involving carbohydrate metabolism and butanoate metabolism. CONCLUSION: Dietary magnesium supplementation can result in intestinal dysbiosis development in a situation where there is no magnesium deficiency. Conversely, low dietary magnesium consumption is associated with microbiota with a higher capacity to harvest energy from the diet.


Asunto(s)
Dieta , Microbioma Gastrointestinal/efectos de los fármacos , Magnesio/administración & dosificación , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Carga Bacteriana , Bacteroidetes/aislamiento & purificación , Ácido Butírico/metabolismo , Metabolismo de los Hidratos de Carbono , Suplementos Dietéticos/efectos adversos , Disbiosis/inducido químicamente , Heces/microbiología , Firmicutes/aislamiento & purificación , Magnesio/efectos adversos , Deficiencia de Magnesio/microbiología , Masculino , Proteobacteria/aislamiento & purificación , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA