Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 187(1): 4155, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25481120

RESUMEN

Interannual variation in rainfall throughout Tamil Nadu has been causing frequent and noticeable land use changes despite the rapid development in groundwater irrigation. Identifying periodically water-stressed areas is the first and crucial step to minimizing negative effects on crop production. Such analysis must be conducted at the basin level as it is an independent water accounting unit. This paper investigates the temporal variation in irrigated area between 2000-2001 and 2010-2011 due to rainfall variation at the state and sub-basin level by mapping and classifying Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite satellite imagery using spectral matching techniques. A land use/land cover map was drawn with an overall classification accuracy of 87.2%. Area estimates between the MODIS-derived net irrigated area and district-level statistics (2000-2001 to 2007-2008) were in 95% agreement. A significant decrease in irrigated area (30-40%) was observed during the water-stressed years of 2002-2003, 2003-2004, and 2009-2010. Major land use changes occurred three times during 2000 to 2010. This study demonstrates how remote sensing can identify areas that are prone to repeated land use changes and pin-point key target areas for the promotion of drought-tolerant varieties, alternative water management practices, and new cropping patterns to ensure sustainable agriculture for food security and livelihoods.


Asunto(s)
Riego Agrícola , Monitoreo del Ambiente , Recursos Hídricos/estadística & datos numéricos , Agricultura , Conservación de los Recursos Naturales/métodos , Agua Subterránea/análisis , Humanos , India , Recursos Hídricos/análisis
2.
J Environ Manage ; 90(10): 3147-54, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19540650

RESUMEN

The tsunami of 26 December 2004 struck the Nagapattinam District, Tamil Nadu, India. Sea water inundation from the tsunami caused salinization problems for soil and groundwater in coastal areas of the district, and also induced salt injuries in crops. To document the recovery of the agricultural environment from the tsunami, we conducted observations of the soil, groundwater, and vegetation. Soil electrical conductivity increased sharply after the tsunami, but returned to pre-tsunami levels the following year. Groundwater salinity returned to pre-tsunami levels by 2006. These rapid rates of recovery were due to the monsoon rainfall leaching salt from the highly permeable soils in the area. MODIS NDVI values measured before and after the tsunami showed that vegetation damaged by the tsunami recovered to its pre-tsunami state by the next rice cropping season, called samba, which starts from August to February. From these results, we conclude that the agricultural environment of the district has now fully recovered from the tsunami. Based on the results, we have also identified important management implications for soil, groundwater, and vegetation as follows: 1) due to the heavy monsoon rainfall and the high permeability of soils in this region, anthropogenic inputs like fertilizers should be applied carefully to minimize pollution, and the use of green manure is recommended; 2) areas that were contaminated by sea water extended up to 1000 m from the sea shore and over pumping of groundwater should be carefully avoided to prevent inducing sea water intrusion; and 3) data from a moderate resolution sensor of 250 m, such as MODIS, can be applied to impact assessment in widespread paddy field areas like the Nagapattinam District.


Asunto(s)
Agricultura , Monitoreo del Ambiente/métodos , Agua Dulce/química , Suelo/análisis , Olas de Marea , Movimientos del Agua , India , Fenómenos Fisiológicos de las Plantas , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA