Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38672909

RESUMEN

Effects of different phenolic compounds on the redox state of myoglobin and their potential for preserving the color and chemical quality of refrigerated longtail tuna (Thunnus tonggol) slices were studied. Purified myoglobin from dark muscle (15.83 kDa) was prepared. Catechin, EGCG, quercetin, and hyperoside affected the absorption spectra and redox state of metmyoglobin (metMb) at 4 °C for up to 72 h differently. Reduction of metMb to oxymyoglobin (oxyMb) was notably observed for two flavonols (EGCG and quercetin) at 50 and 100 ppm. Based on the reducing ability of metMb, EGCG and quercetin were selected for further study. Longtail tuna slices were treated with EGCG and quercetin at 200 and 400 mg/kg. Color (a* and a*/b*), proportion of myoglobin content, and quality changes were monitored over 72 h at 4 °C. Tuna slices treated with 200 mg/kg EGCG showed better maintenance of oxyMb and color as well as lower lipid oxidation (PV and TBARS) and protein oxidation (carbonyl content) than the remaining samples. Nevertheless, EGCG at 400 mg/kg exhibited lower efficacy in retaining the quality of tuna slices. Thus, EGCG at 200 mg/kg could be used to maintain the color and prolong the shelf life of refrigerated longtail tuna slices.

2.
Environ Sci Pollut Res Int ; 31(21): 30688-30702, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38613750

RESUMEN

Microplastic (MP) contamination in seafood, particularly processed varieties like dried and salt-cured fish, poses a significant threat to human health. This study investigated MP levels in 22 salt-cured fish species and commercial sea salts along the Indian east coast. Results showed substantially higher MP concentrations compared to global averages, with fragments and fibres (< 250 µm) composing 70% of identified MPs, primarily PVC and PS polymers (> 55%). Station 2 exhibited high pollution levels, with salt-cured fish averaging 54.06 ± 14.48 MP items/g and salt containing 23.53 ± 4.2 MP items/g, indicating a high hazard risk index. A modest correlation was observed between MP abundance, morphotypes, polymer composition in the salt, and their impact on fish products. Given the critical link between food safety, security, and public health, further research is imperative to mitigate MP contamination, aligning with UN Sustainable Development Goals (Goal 2, Goal 3, Goal 14, and Goal 15) for enhanced food safety and security.


Asunto(s)
Peces , Inocuidad de los Alimentos , Microplásticos , Alimentos Marinos , Animales , Microplásticos/análisis , Desarrollo Sostenible , Contaminación de Alimentos/análisis , Contaminantes Químicos del Agua/análisis
3.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380625

RESUMEN

Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.

4.
Foods ; 12(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36900621

RESUMEN

The objective of this study was to evaluate the impact of varying concentrations of longkong pericarp extract (LPE) on the physicochemical properties of alginate-based edible nanoparticle coatings (NP-ALG) on shrimp. For developing the nanoparticles, the alginate coating emulsion with different LPE concentrations (0.5, 1.0, and 1.5%) was ultrasonicated at 210 W with a frequency of 20 kHz for 10 min and a pulse duration of 1s on and 4 off. After that, the coating emulsion was separated into four treatments (T): T1: Coating solution containing basic ALG composition and without the addition of LPE or ultrasonication treatment; T2: ALG coating solution converted into nano-sized particles with ultrasonication and containing 0.5% LPE; T3: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.0% LPE; T4: ALG coating solution converted into nano-sized particles with ultrasonication and containing 1.5% LPE. A control (C) was also used, where distilled water was used instead of ALG coating. Before coating the shrimp, all the coating materials were tested for pH, viscosity, turbidity, whiteness index, particle size, and polydispersity index. The control samples had the highest pH and whiteness index and was followed by the lowest viscosity and turbidity (p < 0.05). Among the T1-T4 coating materials, T4 coating had higher turbidity, particle size, polydispersity index, but lower pH, viscosity, and whiteness index (p < 0.05). To study the quality and shelf-life of the shrimp, all coated shrimp samples were refrigerated at 4 °C for a period of 14 days. At 2-day intervals, physiochemical and microbial analyses were performed. The coated shrimp also had a lower increase in pH and weight loss over the storage period (p < 0.05). Coatings containing 1.5% LPE significantly reduced the polyphenol oxidase activity in the shrimp (p > 0.05). The addition of LPE to NP-ALG coatings demonstrated dose-dependent antioxidant activity against protein and lipid oxidation. The highest LPE concentration (1.5%) led to increased total and reactive sulfhydryl content, along with a significant decrease in carbonyl content, peroxide value, thiobarbituric acid reactive substances, p-anisidine, and totox values at the end of the storage period (p < 0.05). Additionally, NP-ALG-LPE coated shrimp samples exhibited an excellent antimicrobial property and significantly inhibited the growth of total viable count, lactic acid bacteria, Enterobacteriaceae, and psychotropic bacteria during storage. These results suggested that NP-ALG-LPE 1.5% coatings effectively maintained the quality as well as extended the shelf-life of shrimp during 14 days of refrigerated storage. Therefore, the use of nanoparticle-based LPE edible coating could be a new and effective way to maintain the quality of shrimp during prolonged storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA