Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Carbohydr Polym ; 334: 122020, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38553219

RESUMEN

Zinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied. In-vitro biocompatibility assays were performed with skin fibroblast (CCD-986sk) cells. In-vitro culture of CCD-986sk fibroblasts showed that the ZnO NS facilitated cell adhesion and proliferation. Furthermore, the application of CAP@ZnO TNCHs enhanced cellular interactions and physico-chemical, antibacterial bacterial, and biological performance relative to unmodified CAP hydrogels. Also, an in vivo wound healing study verified that the CAP@ZnO TNCHs promoted wound healing significantly within 18 days, an effect superior to that of unmodified CAP hydrogels. Hence, these newly developed cellulose-based ZnO TNCHs are promising materials for wound healing applications.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Hidrogeles/farmacología , Hidrogeles/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Carboximetilcelulosa de Sodio/química , Antibacterianos/química , Nanoestructuras/química , Cicatrización de Heridas
2.
Nanomaterials (Basel) ; 13(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887901

RESUMEN

Organic-inorganic hybrid perovskite materials continue to attract significant interest due to their optoelectronic application. However, the degradation phenomenon associated with hybrid structures remains a challenging aspect of commercialization. To overcome the stability issue, we have assembled the methylammonium lead bromide nano islands (MNIs) on the backbone of poly-3-dodecyl-thiophene (PDT) for the first time. The structural and morphological properties of the MNI-PDT composite were confirmed with the aid of X-ray diffraction (XRD) studies, Field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS). The optical properties, namely absorption studies, were carried out by ultraviolet-visible spectroscopy. The fluorescent behavior is determined by photoluminescence (PL) spectroscopy. The emission peak for the MNI-PDT was observed at 536 nm. The morphology studies supported by FESEM indicated that the nano islands are completely covered on the surface of the polymer backbone, making the hybrid (MNI-PDT) stable under environmental conditions for three months. The interfacial interaction strategy developed in the present work will provide a new approach for the stabilization of hybrids for a longer time duration.

3.
Int J Biol Macromol ; 253(Pt 5): 127154, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793524

RESUMEN

The rising demand for green and clean energy urges the enlargement of economical and proficient electrode materials for supercapacitors. Herein, we designed a novel electrode material by porous cellulose graphitic carbon (CC) derived from bio-waste cornhusk via the pyrolysis route, and α-Fe2O3 decorated nanostructure with CC (CCIO) was achieved in situ pyrolysis of corn-husk and Fe(NO3)3·9H2O metal salt followed by a coating of polypyrrole (CCIOP). The CC, CCIO, and CCIOP nanocomposite electrodes were characterized by XRD, Raman, FTIR, FE-SEM/EDX, FE-TEM, XPS, and BET analysis. The CCIOP nanocomposite electrode exhibits an enhanced specific capacitance (Csp) of 290.9 F/g, which is substantial to its pristine CC (128.3 F/g), PPy (140.3 F/g), and CCIO (190.7 F/g). The Csp of CCIOP in a three-electrode system, using 1 M Na2SO4 electrolyte exhibits excellent capacity retention of 79.1 % even at a high current density of 10 A/g. The as-fabricated asymmetric supercapacitor (ASC) delivered a remarkable capacity retention of 88.7 % with a coulombic efficiency of 98.8 % even after 3000 cycles. The study shows successful utilization of cellulose from bio-waste cornhusk into a substantial template applicable in future alternative energy storage devices.


Asunto(s)
Grafito , Nanocompuestos , Polímeros , Celulosa , Carbono , Pirroles , Electrodos
4.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686966

RESUMEN

Solvent-free mechanochemical synthesis of efficient and low-cost double perovskite (DP), like a cage of Prussian blue (PB) and PB analogs (PBAs), is a promising approach for different applications such as chemical sensing, energy storage, and conversion. Although the solvent-free mechanochemical grinding approach has been extensively used to create halide-based perovskites, no such reports have been made for cyanide-based double perovskites. Herein, an innovative solvent-free mechanochemical synthetic strategy is demonstrated for synthesizing Fe4[Fe(CN)6]3, Co3[Fe(CN)6]2, and Ni2[Fe(CN)6], where defect sites such as carbon-nitrogen vacancies are inherently introduced during the synthesis. Among all the synthesized PB analogs, the Ni analog manifests a considerable electrocatalytic oxygen evolution reaction (OER) with a low overpotential of 288 mV to obtain the current benchmark density of 20 mA cm-2. We hypothesize that incorporating defects, such as carbon-nitrogen vacancies, and synergistic effects contribute to high catalytic activity. Our findings pave the way for an easy and inexpensive large-scale production of earth-abundant non-toxic electrocatalysts with vacancy-mediated defects for oxygen evolution reaction.

5.
Int J Biol Macromol ; 253(Pt 3): 126948, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37722634

RESUMEN

Today, dyes/pigment-based materials are confronting a serious issue in harming marine ecology. Annihilate these serious water pollutants using photoactive 2D nanohybrid catalysts showed promising comparativeness over available photocatalysts. In the present work, a facile route to decorate Ruthenium (Ru) on 2D MgB2 flower-like nanostructures was developed via ecofriendly guar gum biopolymer substantial template (MgB2/GG@Ru NFS) and its photocatalytic performance was reported. Synthesis of MgB2@Ru, MgB2/GG@Ru NFS and commercial MgB2, was studied by FTIR, XRD, FE-SEM, EDX, AFM, TEM, UV-vis spectra, and XPS analysis. From the results, the MgB2/GG@Ru NFS exhibited a superior photocatalytic performance (99.7 %) than its precursors MgB2@Ru (79.7 %), and MgB2 (53.7 %), with the degradation efficiency of the crystal violet (CV) within 100 min under visible light irradiation. The proposed photo-catalyst MgB2/GG@Ru NFS showed negligible loss of photocatalytic activity even after five successive cycles, revealing its reusability and enhanced stability due to the network structure. The photocatalytic mechanism for MgB2/GG@Ru NFS was evaluated by trapping experiment of active species, verifying that superoxide (O2-) and electron (e-) contributed significant role in the dye degradation.


Asunto(s)
Nanoestructuras , Rutenio , Violeta de Genciana , Luz , Nanoestructuras/química , Colorantes/química
6.
Nanomaterials (Basel) ; 13(16)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37630914

RESUMEN

Designing efficient electrocatalytic systems through facile synthesis remains a formidable task. To address this issue, this paper presents the design of a combination material comprising two transition metal oxides (copper oxide and manganese oxide (CuO/MnO2)), synthesized using a conventional microwave technique to efficiently engage as an active oxygen evolution reaction (OER) catalyst. The structural and morphological properties of the composite were confirmed by the aid of X-ray diffraction (XRD) studies, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive spectrometry (EDS). FESEM clearly indicated well-aligned interlacing of CuO with MnO2. The OER performance was carried out in 1 M KOH. The assembled CuO/MnO2 delivered a benchmark current density (j = 10 mA cm-2) at a minimal overpotential (η = 294 mV), while pristine CuO required a high η (316 mV). Additionally, the CuO/MnO2 electrocatalyst exhibited stability for more than 15 h. These enhanced electrochemical performances were attributed to the large volume and expanded diameter of the pores, which offer ample surface area for catalytic reactions to boost OER. Furthermore, the rate kinetics of the OER are favored in composite due to low Tafel slope (77 mV/dec) compared to CuO (80 mV/dec).

7.
Gels ; 9(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36661804

RESUMEN

This study examined the gel behavior of naturally-occurring palmyra palm kernel (PPK). Due to the presence of polysaccharide in PPK hydrogels, they exhibit excellent swelling behavior in response to pH. Chemotherapeutic drug 5-fluorouracil (5-FU) was encapsulated in these gels using an equilibrium swelling technique. It was found that 5-FU had an encapsulation efficiency of up to 62%. To demonstrate the drug stability in the gels, the PPK hydrogels were characterized using fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. The results showed that the PPK hydrogel matrix contained molecularly dispersed 5-FU drug. The PPK hydrogel exhibited a denser structure and a rough surface, according to images obtained by scanning electron microscopy. In vitro release tests were carried out at pH 1.2 (gastric fluid) and 7.4 (intestinal fluid). The efficacy of the encapsulation and the release patterns were influenced by the network topology of the PPK hydrogel. The release patterns showed that 5-FU was released gradually over a time internal of more than 12 h. The findings suggest that naturally-occurring PPK hydrogels loaded with chemotherapeutic drugs could be employed to treat colon cancer.

8.
Sci Rep ; 12(1): 12951, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127493

RESUMEN

Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs) have been used to fabricate nanostructured materials for various energy devices, such as supercapacitors, sensors, batteries, and electrocatalysts. Nitrogen-doped carbon-based electrodes have been widely used to improve supercapacitor applications via various chemical approaches. Based on previous studies, CuO@MnO2 and CuO@MnO2/N-MWCNT composites were synthesized using a sonication-supported hydrothermal reaction process to evaluate their supercapacitor properties. The structural and morphological properties of the synthesized composite materials were characterized via Raman spectroscopy, XRD, SEM, and SEM-EDX, and the morphological properties of the composite materials were confirmed by the nanostructured composite at the nanometer scale. The CuO@MnO2 and CuO@MnO2/N-MWCNT composite electrodes were fabricated in a three-electrode configuration, and electrochemical analysis was performed via CV, GCD, and EIS. The composite electrodes exhibited the specific capacitance of ~ 184 F g-1 at 0.5 A g-1 in the presence of a 5 M KOH electrolyte for the three-electrode supercapacitor application. Furthermore, it exhibited significantly improved specific capacitances and excellent cycling stability up to 5000 GCD cycles, with a 98.5% capacity retention.

9.
Front Plant Sci ; 13: 843575, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463432

RESUMEN

The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.

10.
Polymers (Basel) ; 14(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35160637

RESUMEN

This study explored the potential of abundantly available sodium lignosulfonate (LS) as a reducer and fabricating agent in preparing silver nanoparticles (LS-Ag NPs). The operational conditions were optimized to make the synthesis process simpler, rapid, and eco-friendly. The prepared LS-Ag NPs were analyzed via UV-Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy. Results demonstrated that LS-Ag NPs were of crystalline structure, capped with LS constituents, and spherical in shape with a size of approximately 20 nm. Under optimized conditions, LS-Ag NPs exhibited significant photocatalytic activity in Reactive Yellow 4G degradation. The effects of photocatalyst (LS-Ag NPs) dosage, dye concentration, and its reusability for dye degradation were studied to make the process practically applicable in textile wastewater treatment. Additionally, the synthesized LS-Ag NPs displayed significant free radical scavenging against 2-diphenyl-1-picrylhydrazyl (DPPH) with an IC50 value of (50.2 ± 0.70 µg/mL) and also exhibited antidiabetic activity in terms of inhibition in the activity of carbohydrate-degrading marker enzyme α-glucosidase with an IC50 value of (58.1 ± 0.65 µg/mL). LS-Ag NPs showed substantial antibacterial potential against pathogenic strains, namely E. coli and S. aureus. In conclusion, LS-Ag NPs can be a reliable and eco-friendly material for their possible application in the treatment of dye-containing wastewater and have a great perspective in the biomedical and pharmaceutical sectors.

11.
Polymers (Basel) ; 13(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34960848

RESUMEN

Global energy consumption has been increasing in tandem with economic growth motivating researchers to focus on renewable energy sources. Dark fermentative hydrogen synthesis utilizing various biomass resources is a promising, less costly, and less energy-intensive bioprocess relative to other biohydrogen production routes. The generated acidogenic dark fermentative effluent [e.g., volatile fatty acids (VFAs)] has potential as a reliable and sustainable carbon substrate for polyhydroxyalkanoate (PHA) synthesis. PHA, an important alternative to petrochemical based polymers has attracted interest recently, owing to its biodegradability and biocompatibility. This review illustrates methods for the conversion of acidogenic effluents (VFAs), such as acetate, butyrate, propionate, lactate, valerate, and mixtures of VFAs, into the value-added compound PHA. In addition, the review provides a comprehensive update on research progress of VFAs to PHA conversion and related enhancement techniques including optimization of operational parameters, fermentation strategies, and genetic engineering approaches. Finally, potential bottlenecks and future directions for the conversion of VFAs to PHA are outlined. This review offers insights to researchers on an integrated biorefinery route for sustainable and cost-effective bioplastics production.

12.
J Pers Med ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34945715

RESUMEN

A newly emerged respiratory viral disease called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is also known as pandemic coronavirus disease (COVID-19). This pandemic has resulted an unprecedented global health crisis and devastating impact on several sectors of human lives and economies. Fortunately, the average case fatality ratio for SARS-CoV-2 is below 2%, much lower than that estimated for MERS (34%) and SARS (11%). However, COVID-19 has a much higher transmissibility rate, as evident from the constant increase in the count of infections worldwide. This article explores the reasons behind how COVID-19 was able to cause a global pandemic crisis. The current outbreak scenario and causes of rapid global spread are examined using recent developments in the literature, epidemiological features relevant to public health awareness, and critical perspective of risk assessment and mitigation strategies. Effective pandemic risk mitigation measures have been established and amended against COVID-19 diseases, but there is still much scope for upgrading execution and coordination among authorities in terms of organizational leadership's commitment and diverse range of safety measures, including administrative control measures, engineering control measures, and personal protective equipment (PPE). The significance of containment interventions against the COVID-19 pandemic is now well established; however, there is a need for its effective execution across the globe, and for the improvement of the performance of risk mitigation practices and suppression of future pandemic crises.

13.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34445448

RESUMEN

Brassinosteroids (BRs) play crucial roles in various biological processes, including plant developmental processes and response to diverse biotic and abiotic stresses. However, no information is currently available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the BZR gene family in wheat to understand the evolution and their role in diverse developmental processes and under different stress conditions. In this study, we performed the genome-wide analysis of the BZR gene family in the bread wheat and identified 20 TaBZR genes through a homology search and further characterized them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses lead to the classification of TaBZR genes into five different groups or subfamilies, providing evidence of evolutionary relationship with Arabidopsis thaliana, Zea mays, Glycine max, and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, and cis-acting regulatory elements were also examined using various computational approaches. In addition, an analysis of public RNA-seq data also shows that TaBZR genes may be involved in diverse developmental processes and stress tolerance mechanisms. Moreover, qRT-PCR results also showed similar expression with slight variation. Collectively, these results suggest that TaBZR genes might play an important role in plant developmental processes and various stress conditions. Therefore, this work provides valuable information for further elucidate the precise role of BZR family members in wheat.


Asunto(s)
Brasinoesteroides/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Estrés Fisiológico , Triticum/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Genómica , Oryza/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Glycine max/genética , Triazoles , Triticum/metabolismo , Triticum/fisiología , Zea mays/genética
14.
Int J Biol Macromol ; 178: 464-476, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662416

RESUMEN

Polymer-clay nanocomposite hydrogel films (PCNCHFs) were prepared from caboxymethyl cellulose, polyvinylpyrrolidone, agar and nanosepiolite clay (0, 0.3, 0.5, 0.7, 0.9 and 1.5% reinforcement) by treating thermally in a simple, rapid, and inexpensive route. The PCNCHFs and its 5-fluorouracil (FU)-loaded composites (PCNCHFs@FU) were tested for FU release and characterized by FTIR, XRD, FE-SEM, EDX, DSC, and TGA analyses to investigate their structural, morphological, and thermal properties. The nanosepiolite-loaded polymer composites (PCNCHF1 to PCNCHF5) exhibited higher tensile strength than the pristine polymer hydrogel (PCNCHF0); consequently, the thermal properties (glass- and melting-transition) were improved. The PCNCHFs@FU demonstrated prolonged FU release at pH 7.4 for 32 h. The biocompatibility of PCNCHFs was tested against human skin fibroblast (CCDK) cells. The viability of cells exposed to all PCNCHFs was >95% after 72 h of culture. The live/dead assay show the proliferation of fibroblast cells, confirming the biocompatibility of the hydrogels. The pH-sensitive PCNCHFs@FU release could be suitable for drug release in cancer therapy, and the developed PCNCHFs may also be useful for tissue engineering, food packaging, and other biological applications.


Asunto(s)
Carboximetilcelulosa de Sodio/química , Portadores de Fármacos/química , Fluorouracilo , Hidrogeles/química , Silicatos de Magnesio/química , Nanocompuestos/química , Fluorouracilo/química , Fluorouracilo/farmacocinética
15.
Int J Biol Macromol ; 159: 474-486, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32437816

RESUMEN

Poly(acrylamide-co-acrylamidoglycolic acid)/guar gum@ Ag-nanocomposite (AgNC@PAAG) hydrogels has been fabricated by a green protocol utilizing rhubarb stem-extract as bioreductant. The prepared nanocomposites (NCs) are formulated by varying guar gum (GG) polymer and cross-linker content, and used remarkably to study the release of an anticancer drug, 5-fluorouracil (FU). The AgNC@PAAG has demonstrated its potential in bacterial inactivation and p-nitrophenol (PNP) reduction. The AgNC@PAAG hydrogels showed extended FU release time, which was up to 23 h in pH 7.4. The higher zone of inhibition was documented for AgNC@PAAG against B. subtilis and E. coli. It was noticed that, the inhibition activity of AgNC@PAAG, was directly proportional to cross-linker content than the GG polymer. The efficiency of AgNC@PAAG as a nanocatalyst was evaluated for a model reduction reaction of p-nitrophenol (PNP) reduction by aqueous sodium borohydride (NaBH4), with an apparent rate constant of 121.8 × 10-3 min-1 at ambient temperature. The proposed nanocatalysts are reliable and recyclable, demonstrated its catalytic recycle efficacy of 85% after the third successive run. These NCs robust its biological and catalytic activity after embedding silver nanoparticles (AgNPs) by the bioreduction process; these optimized nanocatalysts can be remarkably used in biomedical healthcare sectors and industrial catalysis.


Asunto(s)
Tecnología Biomédica , Ciencia Ambiental , Galactanos/química , Mananos/química , Nanopartículas del Metal/química , Nanogeles/química , Gomas de Plantas/química , Plata/química , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Biodegradación Ambiental , Técnicas de Química Sintética , Portadores de Fármacos/química , Liberación de Fármacos , Ciencia Ambiental/métodos , Hidrogeles/síntesis química , Hidrogeles/química , Cinética , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica , Difracción de Rayos X
16.
Carbohydr Polym ; 223: 115074, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31427000

RESUMEN

Dual-functional carbohydrate polymer-based silver nanocomposite (AgNC) hydrogels with self-healing, injectable, and bacterial inactivation properties have attracted particular attention in the wound dressing field. In this study, a rapid formation of AgNC hydrogels were prepared via in situ addition of guar gum-grafted-polyacrylamidoglycolic acid (GG-g-PAGA) polymer and silver nitrate (AgNO3) and sodium borohydride (NaBH4). The GG-g-PAGA polymer and its AgNC hydrogels were analyzed by FTIR, 1H and 13C NMR, UV-vis spectra, FE-SEM, EDX, and FE-TEM. The GG-g-PAGA@AgNC hydrogels exhibited self-healing ability, injectability, stretchability, flowability, high swelling, porosity, upright mechanical behavior, and biodegradability. Moreover, their bacterial inactivation and cytotoxicity were tested against wound pathogens and skin fibroblast cells, respectively. Therefore, incorporating GG-g-PAGA@AgNC hydrogels could be a versatile strategy to speed up wound healing processes, but a clinical trial is still required for its medical applications.


Asunto(s)
Antibacterianos/farmacología , Vendajes , Galactanos/farmacología , Glicolatos/farmacología , Hidrogeles/farmacología , Mananos/farmacología , Gomas de Plantas/farmacología , Polímeros/farmacología , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/química , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Galactanos/química , Glicolatos/química , Humanos , Hidrogeles/química , Mananos/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Tamaño de la Partícula , Gomas de Plantas/química , Polímeros/química , Pseudomonas aeruginosa/efectos de los fármacos , Nitrato de Plata/química , Nitrato de Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
17.
Sci Rep ; 9(1): 8706, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31213633

RESUMEN

Remarkable advances have recently been made in the thermocell array with series or parallel interconnection, however, the output power from the thermocell array is mainly limited by the electrolyte performance of an n-type element. In this work, we investigate iron (II/III) perchlorate electrolytes as a new n-type electrolyte and compared with the ferric/ferrous cyanide electrolyte at its introduction with platinum as the electrodes, which has been the benchmark for thermocells. In comparison, the perchlorate electrolyte (Fe2+/Fe3+) exhibits a high temperature coefficient of redox potential of +1.76 mV/K, which is complementary to the cyanide electrolyte (Fe(CN)63-/Fe(CN)64-) with the temperature coefficient of -1.42 mV/K. The power factor and figure of merit for the electrolyte are higher by 28% and 40%, respectively, than those for the cyanide electrolyte. In terms of device performance, the thermocell using the perchlorate electrolyte provides a power density of 687 mW/m2 that is 45% higher compared to the same device but with the cyanide electrolyte for a small temperature difference of 20 °C. The advent of this high performance n-type electrolyte could open up new ways to achieve substantial advances in p-n thermocells as in p-n thermoelectrics, which has steered the way to the possibility of practical use of thermoelectrics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...