Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 17: 1376128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952419

RESUMEN

Deafness-causing deficiencies in otoferlin (OTOF) have been addressed preclinically using dual adeno-associated virus (AAV)-based approaches. However, timing of transduction, recombination of mRNA, and protein expression with dual hybrid AAV methods methods have not previously been characterized. Here, we have established an ex vivo assay to determine the kinetics of dual-AAV mediated expression of OTOF in hair cells of the mouse utricle. We utilized two different recombinant vectors that comprise DB-OTO, one containing the 5' portion of OTOF under the control of the hair cell-specific Myo15 promoter, and the other the 3' portion of OTOF. We explored specificity of the Myo15 promoter in hair cells of the mouse utricle, established dose response characteristics of DB-OTO ex vivo in an OTOF-deficient mouse model, and demonstrated tolerability of AAV1 in utricular hair cells. Furthermore, we established deviations from a one-to-one ratio of 5' to 3' vectors with little impact on recombined OTOF. Finally, we established a plateau in quantity of recombined OTOF mRNA and protein expression by 14 to 21 days ex vivo with comparable recovery timing to that in vivo model. These findings demonstrate the utility of an ex vivo model system for exploring expression kinetics and establish in vivo and ex vivo recovery timing of dual AAV-mediated OTOF expression.

2.
Cell Rep ; 36(13): 109758, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592158

RESUMEN

Noise-induced hearing loss (NIHL) results from a complex interplay of damage to the sensory cells of the inner ear, dysfunction of its lateral wall, axonal retraction of type 1C spiral ganglion neurons, and activation of the immune response. We use RiboTag and single-cell RNA sequencing to survey the cell-type-specific molecular landscape of the mouse inner ear before and after noise trauma. We identify induction of the transcription factors STAT3 and IRF7 and immune-related genes across all cell-types. Yet, cell-type-specific transcriptomic changes dominate the response. The ATF3/ATF4 stress-response pathway is robustly induced in the type 1A noise-resilient neurons, potassium transport genes are downregulated in the lateral wall, mRNA metabolism genes are downregulated in outer hair cells, and deafness-associated genes are downregulated in most cell types. This transcriptomic resource is available via the Gene Expression Analysis Resource (gEAR; https://umgear.org/NIHL) and provides a blueprint for the rational development of drugs to prevent and treat NIHL.


Asunto(s)
Oído Interno/metabolismo , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ganglio Espiral de la Cóclea/metabolismo , Animales , Cóclea/metabolismo , Cóclea/fisiopatología , Oído Interno/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Pérdida Auditiva Provocada por Ruido/genética , Ratones , Neuronas/metabolismo , Ruido , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiopatología
3.
Nat Commun ; 11(1): 2389, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32404924

RESUMEN

Mammalian hearing requires the development of the organ of Corti, a sensory epithelium comprising unique cell types. The limited number of each of these cell types, combined with their close proximity, has prevented characterization of individual cell types and/or their developmental progression. To examine cochlear development more closely, we transcriptionally profile approximately 30,000 isolated mouse cochlear cells collected at four developmental time points. Here we report on the analysis of those cells including the identification of both known and unknown cell types. Trajectory analysis for OHCs indicates four phases of gene expression while fate mapping of progenitor cells suggests that OHCs and their surrounding supporting cells arise from a distinct (lateral) progenitor pool. Tgfßr1 is identified as being expressed in lateral progenitor cells and a Tgfßr1 antagonist inhibits OHC development. These results provide insights regarding cochlear development and demonstrate the potential value and application of this data set.


Asunto(s)
Cóclea/citología , Células Ciliadas Auditivas Internas/citología , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas/citología , Órgano Espiral/citología , Animales , Células Cultivadas , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Ratones , Órgano Espiral/embriología , Órgano Espiral/crecimiento & desarrollo , Análisis de la Célula Individual/métodos , Factores de Tiempo
4.
Cell ; 174(5): 1247-1263.e15, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078710

RESUMEN

Type I spiral ganglion neurons (SGNs) transmit sound information from cochlear hair cells to the CNS. Using transcriptome analysis of thousands of single neurons, we demonstrate that murine type I SGNs consist of subclasses that are defined by the expression of subsets of transcription factors, cell adhesion molecules, ion channels, and neurotransmitter receptors. Subtype specification is initiated prior to the onset of hearing during the time period when auditory circuits mature. Gene mutations linked to deafness that disrupt hair cell mechanotransduction or glutamatergic signaling perturb the firing behavior of SGNs prior to hearing onset and disrupt SGN subtype specification. We thus conclude that an intact hair cell mechanotransduction machinery is critical during the pre-hearing period to regulate the firing behavior of SGNs and their segregation into subtypes. Because deafness is frequently caused by defects in hair cells, our findings have significant ramifications for the etiology of hearing loss and its treatment.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mecanotransducción Celular , Neuronas/fisiología , Transducción de Señal , Ganglio Espiral de la Cóclea/fisiología , Animales , Análisis por Conglomerados , Marcadores Genéticos , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Mutación , Neuroglía/fisiología , Análisis de Secuencia de ARN
5.
PDA J Pharm Sci Technol ; 68(6): 651-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25475640

RESUMEN

Next-generation sequencing has been evaluated at Genzyme as a means of identifying bioreactor contaminants due to its capability for detection of known and novel microbial species. In this approach, data obtained from next-generation sequencing is used to interrogate databases containing genomic sequences and identities of potential adventitious agents. We describe here the use of this approach to help identify the causative agent of a bioreactor contamination. We also present the results of spiking experiments to establish the limits of detection for DNA viruses, RNA viruses, and bacteria, in a background of Chinese hamster ovary cells, a cell line used for production of many human therapeutics. Using Illumina sequencing-based detection, all of the viruses included in this study were detected at less than 1 copy per cell, and bacteria were detected at 0.001 copy per cell. Thus, next-generation sequencing-based detection of adventitious agents is a valuable approach that can fill a critical unmet need in the detection of known and novel microorganisms in biopharmaceutical manufacturing. LAY ABSTRACT: Because biological products are manufactured in cells, the living environment must be kept sterile. Any introduction of microorganisms into the culture vessel may affect the growth and other biological properties of the cells or contaminate the product. It is therefore important to monitor the culture for such contaminants, but many methods can only detect a specific microorganism. In this study, we show that next-generation sequencing-based detection is a sensitive and complementary approach that can potentially detect a wide range of organisms.


Asunto(s)
Bacterias/genética , Técnicas Bacteriológicas , Productos Biológicos/análisis , Biofarmacia/métodos , Contaminación de Medicamentos/prevención & control , Secuenciación de Nucleótidos de Alto Rendimiento , Virología/métodos , Virus/genética , Animales , Técnicas Bacteriológicas/normas , Biofarmacia/normas , Reactores Biológicos , Células CHO , Técnicas de Cultivo de Célula , Cricetulus , ADN Bacteriano/genética , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Límite de Detección , ARN Viral/genética , Estándares de Referencia , Virología/normas
6.
J Cell Sci ; 122(Pt 7): 1045-53, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19295131

RESUMEN

Fusion of mammalian cells to form stable, non-dividing heterokaryons results in nuclear reprogramming without the exchange of genetic material. In this report, we show that reprogramming in somatic cell heterokaryons involves activation of the canonical skeletal muscle transcription factors as well as contraction-excitation genes. Thus, the effect of heterokaryon formation on gene expression is to induce a recapitulation of differentiation. Heterokaryons formed with a relatively refractory cell type, the hepatocyte cell line HepG2, revealed the importance of both MyoD expression and other unidentified cytoplasmic components, neither of which are sufficient for efficient muscle gene activation, but are synergistic. We provide evidence that de-repression by transient histone deacetylase inhibition can induce MyoD expression and increase the extent and efficiency of muscle gene transcription. Taken together, the results suggest that understanding the mechanistic basis, using a combination of approaches, and taking into account cell history, will facilitate an increase in the efficiency and fidelity of conversion from one differentiated phenotype to another desired cell type. Inherent advantages of the heterokaryon system merit further investigation in the pursuit of directed cloning.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Reprogramación Celular/genética , Músculos/citología , Músculos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Fusión Celular , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/enzimología , Ratones , Proteína MioD/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de la Especie
7.
FASEB J ; 23(5): 1431-40, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19141533

RESUMEN

An understanding of nuclear reprogramming is fundamental to the use of cells in regenerative medicine. Due to technological obstacles, the time course and extent of reprogramming of cells following fusion has not been assessed to date. Here, we show that hundreds of genes are activated or repressed within hours of fusion of human keratinocytes and mouse muscle cells in heterokaryons, and extensive changes are observed within 4 days. This study was made possible by the development of a broadly applicable approach, species-specific transcriptome amplification (SSTA), which enables global resolution of transcripts derived from the nuclei of two species, even when the proportions of species-specific transcripts are highly skewed. Remarkably, either phenotype can be dominant; an excess of primary keratinocytes leads to activation of the keratinocyte program in muscle cells and the converse is true when muscle cells are in excess. We conclude that nuclear reprogramming in heterokaryons is rapid, extensive, bidirectional, and dictated by the balance of regulators contributed by the cell types.


Asunto(s)
Reprogramación Celular , Perfilación de la Expresión Génica/métodos , Células Híbridas/fisiología , Animales , Diferenciación Celular , Fusión Celular , Humanos , Células Híbridas/metabolismo , Queratinocitos/fisiología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
Proc Natl Acad Sci U S A ; 104(11): 4395-400, 2007 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-17360535

RESUMEN

DNA methylation is among the most stable epigenetic marks, ensuring tissue-specific gene expression in a heritable manner throughout development. Here we report that differentiated mesodermal somatic cells can confer tissue-specific changes in DNA methylation on epidermal progenitor cells after fusion in stable multinucleate heterokaryons. Myogenic factors alter regulatory regions of genes in keratinocyte cell nuclei, demethylating and activating a muscle-specific gene and methylating and silencing a keratinocyte-specific gene. Because these changes occur in the absence of DNA replication or cell division, they are mediated by an active mechanism. Thus, the capacity to transfer epigenetic changes to other nuclei is not limited to embryonic stem cells and oocytes but is also a property of highly specialized mammalian somatic cells. These results suggest the possibility of directing the reprogramming of readily available postnatal human progenitor cells toward specific tissue cell types.


Asunto(s)
Núcleo Celular/metabolismo , Metilación de ADN , Animales , División Celular , Islas de CpG , ADN/metabolismo , Células Madre Embrionarias/citología , Células Epidérmicas , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Ratones , Microscopía Fluorescente , Técnicas de Transferencia Nuclear , Células Madre/metabolismo
9.
Dev Biol ; 279(2): 336-44, 2005 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15733662

RESUMEN

Adult bone marrow-derived stem cells (BMDC) have been shown to contribute to numerous tissues after transplantation into a new host. However, whether the participation of these cells is part of the normal response to injury remains a matter of debate. Using parabiotically joined pairs of genetically labeled and wildtype mice, we show here that irradiation-induced damage of the target tissue, injection of bone marrow into the circulation, and immunological perturbation that are consequences of bone marrow transplantation are not necessary for bone marrow contribution to myofibers. Moreover, severe toxin-induced damage is not a prerequisite, as BMDC contribution to muscle is enhanced in response to increased muscle activity resulting from muscle overloading or forced exercise. Indeed, these two forms of muscle stress result in much more rapid contribution (within 1 month) than voluntary running (6 months). These results indicate that BMDC contribute to myofibers in response to physiologic stresses encountered by healthy organisms throughout life.


Asunto(s)
Trasplante de Médula Ósea , Células Madre Hematopoyéticas/fisiología , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Estrés Fisiológico , Animales , Venenos Elapídicos/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora , Desarrollo de Músculos/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/efectos de la radiación , Carrera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA