Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sensors (Basel) ; 23(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299975

RESUMEN

Due to subjectivity in refereeing, the results of race walking are often questioned. To overcome this limitation, artificial-intelligence-based technologies have demonstrated their potential. The paper aims at presenting WARNING, an inertial-based wearable sensor integrated with a support vector machine algorithm to automatically identify race-walking faults. Two WARNING sensors were used to gather the 3D linear acceleration related to the shanks of ten expert race-walkers. Participants were asked to perform a race circuit following three race-walking conditions: legal, illegal with loss-of-contact and illegal with knee-bent. Thirteen machine learning algorithms, belonging to the decision tree, support vector machine and k-nearest neighbor categories, were evaluated. An inter-athlete training procedure was applied. Algorithm performance was evaluated in terms of overall accuracy, F1 score and G-index, as well as by computing the prediction speed. The quadratic support vector was confirmed to be the best-performing classifier, achieving an accuracy above 90% with a prediction speed of 29,000 observations/s when considering data from both shanks. A significant reduction of the performance was assessed when considering only one lower limb side. The outcomes allow us to affirm the potential of WARNING to be used as a referee assistant in race-walking competitions and during training sessions.


Asunto(s)
Máquina de Vectores de Soporte , Dispositivos Electrónicos Vestibles , Humanos , Caminata , Algoritmos , Inteligencia Artificial
2.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560278

RESUMEN

Dynamic posturography combined with wearable sensors has high sensitivity in recognizing subclinical balance abnormalities in patients with Parkinson's disease (PD). However, this approach is burdened by a high analytical load for motion analysis, potentially limiting a routine application in clinical practice. In this study, we used machine learning to distinguish PD patients from controls, as well as patients under and not under dopaminergic therapy (i.e., ON and OFF states), based on kinematic measures recorded during dynamic posturography through portable sensors. We compared 52 different classifiers derived from Decision Tree, K-Nearest Neighbor, Support Vector Machine and Artificial Neural Network with different kernel functions to automatically analyze reactive postural responses to yaw perturbations recorded through IMUs in 20 PD patients and 15 healthy subjects. To identify the most efficient machine learning algorithm, we applied three threshold-based selection criteria (i.e., accuracy, recall and precision) and one evaluation criterion (i.e., goodness index). Twenty-one out of 52 classifiers passed the three selection criteria based on a threshold of 80%. Among these, only nine classifiers were considered "optimum" in distinguishing PD patients from healthy subjects according to a goodness index ≤ 0.25. The Fine K-Nearest Neighbor was the best-performing algorithm in the automatic classification of PD patients and healthy subjects, irrespective of therapeutic condition. By contrast, none of the classifiers passed the three threshold-based selection criteria in the comparison of patients in ON and OFF states. Overall, machine learning is a suitable solution for the early identification of balance disorders in PD through the automatic analysis of kinematic data from dynamic posturography.


Asunto(s)
Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Humanos , Enfermedad de Parkinson/diagnóstico , Aprendizaje Automático , Algoritmos , Redes Neurales de la Computación , Máquina de Vectores de Soporte , Equilibrio Postural/fisiología
3.
Clin Neurophysiol ; 132(10): 2422-2430, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34454269

RESUMEN

OBJECTIVE: Early postural instability (PI) is a red flag for the diagnosis of Parkinson's disease (PD). Several patients, however, fall within the first three years of disease, particularly when turning. We investigated whether PD patients, without clinically overt PI, manifest abnormal reactive postural responses to ecological perturbations resembling turning. METHODS: Fifteen healthy subjects and 20 patients without clinically overt PI, under and not under L-Dopa, underwent dynamic posturography during axial rotations around the longitudinal axis, provided by a robotic mechatronic platform. We measured reactive postural responses, including body displacement and reciprocal movements of the head, trunk, and pelvis, by using a network of three wearable inertial sensors. RESULTS: Patients showed higher body displacement of the head, trunk and pelvis, and lower joint movements at the lumbo-sacral junction than controls. Conversely, movements at the cranio-cervical junction were normal in PD. L-Dopa left reactive postural responses unchanged. CONCLUSIONS: Patients with PD without clinically overt PI manifest abnormal reactive postural responses to axial rotations, unresponsive to L-Dopa. The biomechanical model resulting from our experimental approach supports novel pathophysiological hypotheses of abnormal axial rotations in PD. SIGNIFICANCE: PD patients without clinically overt PI present subclinical balance impairment during axial rotations, unresponsive to L-Dopa.


Asunto(s)
Enfermedad de Parkinson/fisiopatología , Equilibrio Postural/fisiología , Robótica/métodos , Rotación , Dispositivos Electrónicos Vestibles , Anciano , Antiparkinsonianos/farmacología , Antiparkinsonianos/uso terapéutico , Diagnóstico Precoz , Femenino , Humanos , Levodopa/farmacología , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Equilibrio Postural/efectos de los fármacos , Robótica/instrumentación
4.
Sensors (Basel) ; 21(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467072

RESUMEN

The estimation of the body's center of mass (CoM) trajectory is typically obtained using force platforms, or optoelectronic systems (OS), bounding the assessment inside a laboratory setting. The use of magneto-inertial measurement units (MIMUs) allows for more ecological evaluations, and previous studies proposed methods based on either a single sensor or a sensors' network. In this study, we compared the accuracy of two methods based on MIMUs. Body CoM was estimated during six postural tasks performed by 15 healthy subjects, using data collected by a single sensor on the pelvis (Strapdown Integration Method, SDI), and seven sensors on the pelvis and lower limbs (Biomechanical Model, BM). The accuracy of the two methods was compared in terms of RMSE and estimation of posturographic parameters, using an OS as reference. The RMSE of the SDI was lower in tasks with little or no oscillations, while the BM outperformed in tasks with greater CoM displacement. Moreover, higher correlation coefficients were obtained between the posturographic parameters obtained with the BM and the OS. Our findings showed that the estimation of CoM displacement based on MIMU was reasonably accurate, and the use of the inertial sensors network methods should be preferred to estimate the kinematic parameters.


Asunto(s)
Fenómenos Biomecánicos , Humanos , Extremidad Inferior , Pelvis
5.
Front Bioeng Biotechnol ; 8: 581619, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195143

RESUMEN

The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.

6.
Sensors (Basel) ; 20(11)2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32517315

RESUMEN

Balance impairment is a major mechanism behind falling along with environmental hazards. Under physiological conditions, ageing leads to a progressive decline in balance control per se. Moreover, various neurological disorders further increase the risk of falls by deteriorating specific nervous system functions contributing to balance. Over the last 15 years, significant advancements in technology have provided wearable solutions for balance evaluation and the management of postural instability in patients with neurological disorders. This narrative review aims to address the topic of balance and wireless sensors in several neurological disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and other neurodegenerative and acute clinical syndromes. The review discusses the physiological and pathophysiological bases of balance in neurological disorders as well as the traditional and innovative instruments currently available for balance assessment. The technical and clinical perspectives of wearable technologies, as well as current challenges in the field of teleneurology, are also examined.


Asunto(s)
Enfermedades del Sistema Nervioso , Equilibrio Postural , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Accidentes por Caídas/prevención & control , Humanos , Enfermedades del Sistema Nervioso/diagnóstico
7.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517013

RESUMEN

Over the last two decades, experimental studies in humans and other vertebrates have increasingly used muscle synergy analysis as a computational tool to examine the physiological basis of motor control. The theoretical background of muscle synergies is based on the potential ability of the motor system to coordinate muscles groups as a single unit, thus reducing high-dimensional data to low-dimensional elements. Muscle synergy analysis may represent a new framework to examine the pathophysiological basis of specific motor symptoms in Parkinson's disease (PD), including balance and gait disorders that are often unresponsive to treatment. The precise mechanisms contributing to these motor symptoms in PD remain largely unknown. A better understanding of the pathophysiology of balance and gait disorders in PD is necessary to develop new therapeutic strategies. This narrative review discusses muscle synergies in the evaluation of motor symptoms in PD. We first discuss the theoretical background and computational methods for muscle synergy extraction from physiological data. We then critically examine studies assessing muscle synergies in PD during different motor tasks including balance, gait and upper limb movements. Finally, we speculate about the prospects and challenges of muscle synergy analysis in order to promote future research protocols in PD.


Asunto(s)
Electromiografía , Músculo Esquelético , Enfermedad de Parkinson , Marcha , Humanos , Movimiento , Músculo Esquelético/fisiopatología , Enfermedad de Parkinson/fisiopatología
8.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168844

RESUMEN

Ergonomics evaluation through measurements of biomechanical parameters in real time has a great potential in reducing non-fatal occupational injuries, such as work-related musculoskeletal disorders. Assuming a correct posture guarantees the avoidance of high stress on the back and on the lower extremities, while an incorrect posture increases spinal stress. Here, we propose a solution for the recognition of postural patterns through wearable sensors and machine-learning algorithms fed with kinematic data. Twenty-six healthy subjects equipped with eight wireless inertial measurement units (IMUs) performed manual material handling tasks, such as lifting and releasing small loads, with two postural patterns: correctly and incorrectly. Measurements of kinematic parameters, such as the range of motion of lower limb and lumbosacral joints, along with the displacement of the trunk with respect to the pelvis, were estimated from IMU measurements through a biomechanical model. Statistical differences were found for all kinematic parameters between the correct and the incorrect postures (p < 0.01). Moreover, with the weight increase of load in the lifting task, changes in hip and trunk kinematics were observed (p < 0.01). To automatically identify the two postures, a supervised machine-learning algorithm, a support vector machine, was trained, and an accuracy of 99.4% (specificity of 100%) was reached by using the measurements of all kinematic parameters as features. Meanwhile, an accuracy of 76.9% (specificity of 76.9%) was reached by using the measurements of kinematic parameters related to the trunk body segment.


Asunto(s)
Ergonomía/métodos , Elevación/efectos adversos , Aprendizaje Automático , Reconocimiento de Normas Patrones Automatizadas/métodos , Dispositivos Electrónicos Vestibles , Adulto , Algoritmos , Fenómenos Biomecánicos/fisiología , Humanos , Extremidad Inferior/fisiología , Enfermedades Musculoesqueléticas/etiología , Enfermedades Musculoesqueléticas/prevención & control , Enfermedades Profesionales/etiología , Enfermedades Profesionales/prevención & control , Postura/fisiología , Medición de Riesgo , Adulto Joven
9.
Heliyon ; 6(1): e03262, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32021934

RESUMEN

In this paper we performed the evaluation of ankle motor performance and motor learning during a goal-directed task, executed using the pediAnklebot robot. The protocol consisted of 3 phases (Familiarization, Adaptation, and Wash Out) repeated one time for each movement direction (plantarflexion, dorsiflexion, inversion, and eversion). During Familiarization and Wash out subjects performed goal-directed movements in unperturbed environment, whereas during Adaptation phase, a curl viscous force field was applied and it was randomly removed 10 times out of 200. Ankle motor performance was evaluated by means of a set of indices grouped into: accuracy, smoothness, temporal, and stopping indices. Learning Index was calculated to study the motor learning during the adaptation phase, which was subdivided into 5 temporal intervals (target sets). The outcomes related to the ankle motor performance highlighted that the best performance in terms of accuracy and smoothness of the trajectories was obtained in dorsiflexion movements in the sagittal plane, and in inversion rotations in the frontal plane. Differences between movement directions revealed an anisotropic behavior of the ankle joint. Results of the Learning index showed a capability of the subjects to rapidly adapt to a perturbed force field depending on the magnitude of the perceived field.

10.
Sensors (Basel) ; 20(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31861945

RESUMEN

Maintaining balance stability while turning in a quasi-static stance and/or in dynamic motion requires proper recovery mechanisms to manage sudden center-of-mass displacement. Furthermore, falls during turning are among the main concerns of community-dwelling elderly population. This study investigates the effect of aging on reactive postural responses to continuous yaw perturbations on a cohort of 10 young adults (mean age 28 ± 3 years old) and 10 older adults (mean age 61 ± 4 years old). Subjects underwent external continuous yaw perturbations provided by the RotoBit1D platform. Different conditions of visual feedback (eyes opened and eyes closed) and perturbation intensity, i.e., sinusoidal rotations on the horizontal plane at different frequencies (0.2 Hz and 0.3 Hz), were applied. Kinematics of axial body segments was gathered using three inertial measurement units. In order to measure reactive postural responses, we measured body-absolute and joint absolute rotations, center-of-mass displacement, body sway, and inter-joint coordination. Older adults showed significant reduction in horizontal rotations of body segments and joints, as well as in center-of-mass displacement. Furthermore, older adults manifested a greater variability in reactive postural responses than younger adults. The abnormal reactive postural responses observed in older adults might contribute to the well-known age-related difficulty in dealing with balance control during turning.


Asunto(s)
Envejecimiento , Equilibrio Postural/fisiología , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Cabeza/fisiología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Clin Neurophysiol ; 130(10): 1789-1797, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31401487

RESUMEN

OBJECTIVE: Gait impairment is a highly disabling symptom for Parkinson's disease (PD) patients. Rhythmic auditory stimulation (RAS), has shown to improve spatio-temporal gait parameters in PD, but only a few studies have focused on their effects on gait kinematics, and the ideal stimulation frequency has still not been identified. METHODS: We enrolled 30 PD patients and 18 controls. Patients were evaluated under two conditions (with (ON), and without (OFF) medications) with three different RAS frequencies (90%, 100%, and 110% of the patient's preferred walking cadence). Spatial-temporal parameters, joint angles and gait phases distribution were evaluated. A novel global index (GPQI) was used to quantify the difference in gait phase distribution. RESULTS: Along with benefits in spatial-temporal parameters, GPQI improved significantly with RAS at a frequency of 110% for both ON and OFF medication conditions. In the most severe patients, the same result was observed also with RAS at 100%. CONCLUSIONS: RAS administration, at a frequency of 110% of the preferred walking frequency, can be beneficial in improving the gait pattern in PD patients. SIGNIFICANCE: When rhythmic auditory stimulation is provided to patients with PD, the selection of an adequate frequency of stimulation can optimize their effects on gait pattern.


Asunto(s)
Estimulación Acústica/métodos , Antiparkinsonianos/uso terapéutico , Marcha/fisiología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Periodicidad , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos/fisiología , Femenino , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Resultado del Tratamiento
12.
Sensors (Basel) ; 19(6)2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934643

RESUMEN

The validity of results in race walking is often questioned due to subjective decisions in the detection of faults. This study aims to compare machine-learning algorithms fed with data gathered from inertial sensors placed on lower-limb segments to define the best-performing classifiers for the automatic detection of illegal steps. Eight race walkers were enrolled and linear accelerations and angular velocities related to pelvis, thighs, shanks, and feet were acquired by seven inertial sensors. The experimental protocol consisted of two repetitions of three laps of 250 m, one performed with regular race walking, one with loss-of-contact faults, and one with knee-bent faults. The performance of 108 classifiers was evaluated in terms of accuracy, recall, precision, F1-score, and goodness index. Generally, linear accelerations revealed themselves as more characteristic with respect to the angular velocities. Among classifiers, those based on the support vector machine (SVM) were the most accurate. In particular, the quadratic SVM fed with shank linear accelerations was the best-performing classifier, with an F1-score and a goodness index equal to 0.89 and 0.11, respectively. The results open the possibility of using a wearable device for automatic detection of faults in race walking competition.

13.
Sensors (Basel) ; 19(3)2019 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-30717482

RESUMEN

Advancements in the study of the human sense of touch are fueling the field of haptics. This is paving the way for augmenting sensory perception during object palpation in tele-surgery and reproducing the sensed information through tactile feedback. Here, we present a novel tele-palpation apparatus that enables the user to detect nodules with various distinct stiffness buried in an ad-hoc polymeric phantom. The contact force measured by the platform was encoded using a neuromorphic model and reproduced on the index fingertip of a remote user through a haptic glove embedding a piezoelectric disk. We assessed the effectiveness of this feedback in allowing nodule identification under two experimental conditions of real-time telepresence: In Line of Sight (ILS), where the platform was placed in the visible range of a user; and the more demanding Not In Line of Sight (NILS), with the platform and the user being 50 km apart. We found that the entailed percentage of identification was higher for stiffer inclusions with respect to the softer ones (average of 74% within the duration of the task), in both telepresence conditions evaluated. These promising results call for further exploration of tactile augmentation technology for telepresence in medical interventions.


Asunto(s)
Retroalimentación Sensorial/fisiología , Palpación/instrumentación , Dedos/fisiología , Gestos , Guantes Protectores , Humanos , Fantasmas de Imagen , Tacto/fisiología , Interfaz Usuario-Computador
14.
PeerJ ; 6: e5544, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202655

RESUMEN

Robot-mediated therapies enhance the recovery of post-stroke patients with motor deficits. Repetitive and repeatable exercises are essential for rehabilitation following brain damage or other disorders that impact the central nervous system, as plasticity permits to reorganize its neural structure, fostering motor relearning. Despite the fact that so many studies claim the validity of robot-mediated therapy in post-stroke patient rehabilitation, it is still difficult to assess to what extent its adoption improves the efficacy of traditional therapy in daily life, and also because most of the studies involved planar robots. In this paper, we report the effects of a 20-session-rehabilitation project involving the Armeo Power robot, an assistive exoskeleton to perform 3D upper limb movements, in addition to conventional rehabilitation therapy, on 10 subacute stroke survivors. Patients were evaluated through clinical scales and a kinematic assessment of the upper limbs, both pre- and post-treatment. A set of indices based on the patients' 3D kinematic data, gathered from an optoelectronic system, was calculated. Statistical analysis showed a remarkable difference in most parameters between pre- and post-treatment. Significant correlations between the kinematic parameters and clinical scales were found. Our findings suggest that 3D robot-mediated rehabilitation, in addition to conventional therapy, could represent an effective means for the recovery of upper limb disability. Kinematic assessment may represent a valid tool for objectively evaluating the efficacy of the rehabilitation treatment.

15.
Sensors (Basel) ; 18(3)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558410

RESUMEN

Monitoring gait quality in daily activities through wearable sensors has the potential to improve medical assessment in Parkinson's Disease (PD). In this study, four gait partitioning methods, two based on thresholds and two based on a machine learning approach, considering the four-phase model, were compared. The methods were tested on 26 PD patients, both in OFF and ON levodopa conditions, and 11 healthy subjects, during walking tasks. All subjects were equipped with inertial sensors placed on feet. Force resistive sensors were used to assess reference time sequence of gait phases. Goodness Index (G) was evaluated to assess accuracy in gait phases estimation. A novel synthetic index called Gait Phase Quality Index (GPQI) was proposed for gait quality assessment. Results revealed optimum performance (G < 0.25) for three tested methods and good performance (0.25 < G < 0.70) for one threshold method. The GPQI resulted significantly higher in PD patients than in healthy subjects, showing a moderate correlation with clinical scales score. Furthermore, in patients with severe gait impairment, GPQI was found higher in OFF than in ON state. Our results unveil the possibility of monitoring gait quality in PD through real-time gait partitioning based on wearable sensors.


Asunto(s)
Marcha , Pie , Humanos , Aprendizaje Automático , Enfermedad de Parkinson
16.
Sensors (Basel) ; 18(1)2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29342076

RESUMEN

We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland). In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency-mimetic neuronal models, and can be useful for the design of high performance haptic devices.


Asunto(s)
Dedos , Humanos , Italia , Tacto , Percepción del Tacto , Vibración
17.
Appl Bionics Biomech ; 2018: 5852307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30595715

RESUMEN

Muscle synergy theory is a new appealing approach for different research fields. This study is aimed at evaluating the robustness of EMG reconstruction via muscle synergies and the repeatability of muscle synergy parameters as potential neurophysiological indices. Eight healthy subjects performed walking, stepping, running, and ascending and descending stairs' trials for five repetitions in three sessions. Twelve muscles of the dominant leg were analyzed. The "nonnegative matrix factorization" and "variability account for" were used to extract muscle synergies and to assess EMG goodness reconstruction, respectively. Intraclass correlation was used to quantify methodology reliability. Cosine similarity and coefficient of determination assessed the repeatability of the muscle synergy vectors and the temporal activity patterns, respectively. A 4-synergy model was selected for EMG signal factorization. Intraclass correlation was excellent for the overall reconstruction, while it ranged from fair to excellent for single muscles. The EMG reconstruction was found repeatable across sessions and subjects. Considering the selection of neurophysiological indices, the number of synergies was not repeatable neither within nor between subjects. Conversely, the cosine similarity and coefficient of determination values allow considering the muscle synergy vectors and the temporal activity patterns as potential neurophysiological indices due to their similarity both within and between subjects. More specifically, some synergies in the 4-synergy model reveal themselves as more repeatable than others, suggesting focusing on them when seeking at the neurophysiological index identification.

18.
Sensors (Basel) ; 17(11)2017 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-29156582

RESUMEN

Prof. Paolo Cappa passed away on 26 August 2016, at the age of 59, after a long and courageous fight against cancer. Paolo Cappa was a Professor in Mechanical and Thermal Measurements and Experimental Biomechanics in the Department of Mechanical and Aerospace Engineering of Sapienza University of Rome, where he had also served as the Head of the Department, and a Research Professor in the Department of Mechanical and Aerospace Engineering of New York University Tandon School of Engineering. During his intense, yet short, career, he made several significant scientific contributions within the discipline of Mechanical and Thermal Measurements, pioneering fundamental applications to Biomechanics. He co-founded the Motion Analysis and Robotics Laboratory (MARLab) within the Neurorehabilitation Division of IRCCS Pediatric Hospital "Bambino Gesu", in Rome, to fuel transitional research from the laboratory to clinical practice. Through collaboration with neurologists and physiatrists at MARLab, Prof. Cappa led the development of a powerful array of novel mechanical solutions to wearable robotics for pediatric patients, addressing dramatic needs for children's health and contributing to the training of an entire generation of Mechanical Engineering students.

19.
IEEE Int Conf Rehabil Robot ; 2017: 326-331, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28813840

RESUMEN

The aim of the study is to design a novel protocol to characterize the ankle movements during dorsal and plantar flexion reaching tasks using the pediAnklebot. Five healthy children were instructed to control a pointer and hit targets appearing on the monitor, by moving their ankle alternatively up and down. The protocol consisted of 60 targets, 30 up and 30 down, reachable via dorsiflexion and plantarflexion movements, respectively. Ankle angular displacements and torques were gathered by encoders and load cells embedded in the robot. Ankle motor performance was evaluated by means of kinematic, submovements and dynamic indices. Results suggest that (i) plantarflexion movements are faster and more accurate than the dorsiflexion ones, but children are able to perform with a higher level of smoothness the latter ones; (ii) children are able to stop the ankle movement more easily at the end of dorsiflexion rather than plantarflexion; (iii) the central nervous system plans plantarflexion and dorsiflexion movements with the same efficiency; (iv) children apply different torque levels during the two motor tasks and they cannot balance the inversion and eversion moments during dorsiflexion. These findings provide an important starting point for the assessment of a reference baseline of motor indices for the ankle joint.


Asunto(s)
Articulación del Tobillo/fisiología , Tobillo/fisiología , Dispositivo Exoesqueleto , Dispositivos Electrónicos Vestibles , Fenómenos Biomecánicos/fisiología , Calibración , Niño , Preescolar , Humanos , Movimiento/fisiología , Rango del Movimiento Articular/fisiología , Análisis y Desempeño de Tareas
20.
Front Hum Neurosci ; 11: 277, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28611612

RESUMEN

Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT) showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i) the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP), and (ii) the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior). In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...