Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 238: 124089, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36948336

RESUMEN

Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.


Asunto(s)
Fenómenos Mecánicos , Nanotecnología , Microscopía de Fuerza Atómica/métodos , Nanotecnología/métodos , Análisis Espectral
2.
Molecules ; 26(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33916911

RESUMEN

Protein O-fucosyltransferase 1 (PoFUT1) is a GT-B fold enzyme that fucosylates proteins containing EGF-like repeats. GT-B glycosyltransferases have shown a remarkable grade of plasticity adopting closed and open conformations as a way of tuning their catalytic cycle, a feature that has not been observed for PoFUT1. Here, we analyzed Caenorhabditis elegans PoFUT1 (CePoFUT1) conformational behavior in solution by atomic force microscopy (AFM) and single-molecule fluorescence resonance energy transfer (SMF-FRET). Our results show that this enzyme is very flexible and adopts mainly compact conformations and to a lesser extend a highly dynamic population that oscillates between compact and highly extended conformations. Overall, our experiments illustrate the inherent complexity of CePoFUT1 dynamics, which might play a role during its catalytic cycle.


Asunto(s)
Fucosiltransferasas/química , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Algoritmos , Proteínas Portadoras , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Humanos , Microscopía de Fuerza Atómica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes , Soluciones , Especificidad por Sustrato , Galactósido 2-alfa-L-Fucosiltransferasa
3.
Biochem J ; 475(1): 151-168, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29203647

RESUMEN

FUR (Ferric uptake regulator) proteins are among the most important families of transcriptional regulators in prokaryotes, often behaving as global regulators. In the cyanobacterium Anabaena PCC 7120, FurB (Zur, Zinc uptake regulator) controls zinc and redox homeostasis through the repression of target genes in a zinc-dependent manner. In vitro, non-specific binding of FurB to DNA elicits protection against oxidative damage and avoids cleavage by deoxyribonuclease I. The present study provides, for the first time, evidence of the influence of redox environment in the interaction of FurB with regulatory zinc and its consequences in FurB-DNA-binding affinity. Calorimetry studies showed that, in addition to one structural Zn(II), FurB is able to bind two additional Zn(II) per monomer and demonstrated the implication of cysteine C93 in regulatory Zn(II) coordination. The interaction of FurB with the second regulatory zinc occurred only under reducing conditions. While non-specific FurB-DNA interaction is Zn(II)-independent, the optimal binding of FurB to target promoters required loading of two regulatory zinc ions. Those results combined with site-directed mutagenesis and gel-shift assays evidenced that the redox state of cysteine C93 conditions the binding of the second regulatory Zn(II) and, in turn, modulates the affinity for a specific DNA target. Furthermore, differential spectroscopy studies showed that cysteine C93 could also be involved in heme coordination by FurB, either as a direct ligand or being located near the binding site. The results indicate that besides controlling zinc homeostasis, FurB could work as a redox-sensing protein probably modifying its zinc and DNA-binding abilities depending upon environmental conditions.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/química , ADN Bacteriano/química , Proteínas de Unión al ADN/química , Hemo/química , Metaloproteínas/química , Zinc/química , Secuencia de Aminoácidos , Anabaena/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasa I/química , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Expresión Génica , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Cinética , Metaloproteínas/genética , Metaloproteínas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Estrés Oxidativo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Zinc/metabolismo
4.
Nat Chem Biol ; 12(4): 240-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26854667

RESUMEN

Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Fucosiltransferasas/química , Proteínas Recombinantes de Fusión/química , Trombospondina 1/química , Agua/química , Secuencia de Bases , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo , Transfección
5.
Nat Commun ; 6: 6937, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25939779

RESUMEN

Protein O-glycosylation is controlled by polypeptide GalNAc-transferases (GalNAc-Ts) that uniquely feature both a catalytic and lectin domain. The underlying molecular basis of how the lectin domains of GalNAc-Ts contribute to glycopeptide specificity and catalysis remains unclear. Here we present the first crystal structures of complexes of GalNAc-T2 with glycopeptides that together with enhanced sampling molecular dynamics simulations demonstrate a cooperative mechanism by which the lectin domain enables free acceptor sites binding of glycopeptides into the catalytic domain. Atomic force microscopy and small-angle X-ray scattering experiments further reveal a dynamic conformational landscape of GalNAc-T2 and a prominent role of compact structures that are both required for efficient catalysis. Our model indicates that the activity profile of GalNAc-T2 is dictated by conformational heterogeneity and relies on a flexible linker located between the catalytic and the lectin domains. Our results also shed light on how GalNAc-Ts generate dense decoration of proteins with O-glycans.


Asunto(s)
Dominio Catalítico , Lectinas/química , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/metabolismo , Cristalografía por Rayos X , Glicopéptidos/química , Glicopéptidos/metabolismo , Glicosilación , Modelos Moleculares , Simulación de Dinámica Molecular , Nucleótidos/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Polipéptido N-Acetilgalactosaminiltransferasa
6.
Biochim Biophys Acta ; 1854(8): 897-906, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25801930

RESUMEN

Prokaryotic FAD synthetases (FADSs) are bifunctional enzymes composed of two modules, the C-terminal module with ATP:riboflavin kinase (RFK) activity, and the N-terminus with ATP:FMN adenylyltransferase (FMNAT) activity. The FADS from Corynebacterium ammoniagenes, CaFADS, forms transient oligomers during catalysis. These oligomers are stabilized by several interactions between the RFK and FMNAT sites from neighboring protomers, which otherwise are separated in the monomeric enzyme. Among these inter-protomer interactions, the salt bridge between E268 at the RFK site and R66 at the FMNAT-module is particularly relevant, as E268 is the catalytic base of the kinase reaction. Here we have introduced point mutations at R66 to analyze the impact of the salt-bridge on ligand binding and catalysis. Interestingly, these mutations have only mild effects on ligand binding and kinetic properties of the FMNAT-module (where R66 is located), but considerably impair the RFK activity turnover. Substitutions of R66 also modulate the ratio between monomeric and oligomeric species and modify the quaternary arrangement observed by single-molecule methods. Therefore, our data further support the cross-talk between the RFK- and FMNAT-modules of neighboring protomers in the CaFADS enzyme, and establish the participation of R66 in the modulation of the geometry of the RFK active site during catalysis.


Asunto(s)
Corynebacterium/enzimología , Nucleotidiltransferasas/química , Sustitución de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Dominio Catalítico , Corynebacterium/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Mutación Puntual , Estructura Cuaternaria de Proteína
7.
Biochim Biophys Acta ; 1844(3): 623-31, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24440406

RESUMEN

Fur (ferric uptake regulator) proteins are involved in the control of a variety of processes in most prokaryotes. Although it is assumed that this regulator binds its DNA targets as a dimer, the way in which this interaction occurs remains unknown. We have focused on FurA from the cyanobacterium Anabaena sp. PCC 7120. To assess the molecular mechanism by which FurA specifically binds to "iron boxes" in PfurA, we examined the topology arrangement of FurA-DNA complexes by atomic force microscopy. Interestingly, FurA-PfurA complexes exhibit several populations, in which one is the predominant and depends clearly on the regulator/promoter ratio on the environment. Those results together with EMSA and other techniques suggest that FurA binds PfurA using a sequential mechanism: (i) a monomer specifically binds to an "iron box" and bends PfurA; (ii) two situations may occur, that a second FurA monomer covers the free "iron box" or that joins to the previously used forming a dimer which would maintain the DNA kinked; (iii) trimerization in which the DNA is unbent; and (iv) finally undergoes a tetramerization; the next coming molecules cover the DNA strands unspecifically. In summary, the bending appears when an "iron box" is bound to one or two molecules and decreases when both "iron boxes" are covered. These results suggest that DNA bending contributes at the first steps of FurA repression promoting the recruitment of new molecules resulting in a fine regulation in the Fur-dependent cluster associated genes.


Asunto(s)
Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Nanotecnología , Ensayo de Cambio de Movilidad Electroforética , Microscopía de Fuerza Atómica , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA