Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Nat Commun ; 15(1): 3905, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724522

RESUMEN

Glioblastoma multiforme (GBM) encompasses brain malignancies marked by phenotypic and transcriptional heterogeneity thought to render these tumors aggressive, resistant to therapy, and inevitably recurrent. However, little is known about how the spatial organization of GBM genomes underlies this heterogeneity and its effects. Here, we compile a cohort of 28 patient-derived glioblastoma stem cell-like lines (GSCs) known to reflect the properties of their tumor-of-origin; six of these were primary-relapse tumor pairs from the same patient. We generate and analyze 5 kbp-resolution chromosome conformation capture (Hi-C) data from all GSCs to systematically map thousands of standalone and complex structural variants (SVs) and the multitude of neoloops arising as a result. By combining Hi-C, histone modification, and gene expression data with chromatin folding simulations, we explain how the pervasive, uneven, and idiosyncratic occurrence of neoloops sustains tumor-specific transcriptional programs via the formation of new enhancer-promoter contacts. We also show how even moderately recurrent neoloops can relate to patient-specific vulnerabilities. Together, our data provide a resource for dissecting GBM biology and heterogeneity, as well as for informing therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Cromatina , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Glioblastoma/genética , Glioblastoma/patología , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cromatina/metabolismo , Cromatina/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Heterogeneidad Genética , Regiones Promotoras Genéticas/genética , Transcripción Genética , Elementos de Facilitación Genéticos/genética , Cromosomas Humanos/genética
2.
J Pers Med ; 14(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673040

RESUMEN

Personalizing clinical, diagnostic and therapeutic approaches in neuro-oncology is a huge challenge [...].

3.
Cells ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38607010

RESUMEN

Extracellular vesicles (EVs) are secreted from many tumors, including glioblastoma multiforme (GBM), the most common and lethal brain tumor in adults, which shows high resistance to current therapies and poor patient prognosis. Given the high relevance of the information provided by cancer cell secretome, we performed a proteomic analysis of microvesicles (MVs) and exosomes (EXOs) released from GBM-derived stem cells (GSCs). The latter, obtained from the brain of GBM patients, expressed P2X7 receptors (P2X7Rs), which positively correlate with GBM growth and invasiveness. P2X7R stimulation of GSCs caused significant changes in the EV content, mostly ex novo inducing or upregulating the expression of proteins related to cytoskeleton reorganization, cell motility/spreading, energy supply, protection against oxidative stress, chromatin remodeling, and transcriptional regulation. Most of the induced/upregulated proteins have already been identified as GBM diagnostic/prognostic factors, while others have only been reported in peripheral tumors. Our findings indicate that P2X7R stimulation enhances the transport and, therefore, possible intercellular exchange of GBM aggressiveness-increasing proteins by GSC-derived EVs. Thus, P2X7Rs could be considered a new druggable target of human GBM, although these data need to be confirmed in larger experimental sets.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Receptores Purinérgicos P2X7 , Secretoma , Humanos , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Glioblastoma/metabolismo , Células Madre Neoplásicas/patología , Proteoma/metabolismo , Proteómica , Receptores Purinérgicos P2X7/metabolismo
4.
Expert Rev Mol Med ; 26: e5, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563164

RESUMEN

Glioblastoma IDH wild type (GBM) is a very aggressive brain tumour, characterised by an infiltrative growth pattern and by a prominent neoangiogenesis. Its prognosis is unfortunately dismal, and the median overall survival of GBM patients is short (15 months). Clinical management is based on bulk tumour removal and standard chemoradiation with the alkylating drug temozolomide, but the tumour invariably recurs leading to patient's death. Clinical options for GBM patients remained unaltered for almost two decades until the encouraging results obtained by the phase II REGOMA trial allowed the introduction of the multikinase inhibitor regorafenib as a preferred regimen in relapsed GBM treatment by the National Comprehensive Cancer Network (NCCN) 2020 Guideline. Regorafenib, a sorafenib derivative, targets kinases associated with angiogenesis (VEGFR 1-3), as well as oncogenesis (c-KIT, RET, FGFR) and stromal kinases (FGFR, PDGFR-b). It was already approved for metastatic colorectal cancers and hepatocellular carcinomas. The aim of the present review is to focus on both the molecular and clinical knowledge collected in these first three years of regorafenib use in GBM.


Asunto(s)
Antineoplásicos , Glioblastoma , Neoplasias Hepáticas , Compuestos de Fenilurea , Piridinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Resultado del Tratamiento , Neoplasias Hepáticas/tratamiento farmacológico
5.
Cancer Cell Int ; 24(1): 72, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347567

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most lethal primary brain tumor in adult, characterized by highly aggressive and infiltrative growth. The current therapeutic management of GBM includes surgical resection followed by ionizing radiations and chemotherapy. Complex and dynamic interplay between tumor cells and tumor microenvironment drives the progression and contributes to therapeutic resistance. Extracellular vesicles (EVs) play a crucial role in the intercellular communication by delivering bioactive molecules in the surrounding milieu modulating tumor microenvironment. METHODS: In this study, we isolated by ultracentrifugation EVs from GBM stem-like cell (GSC) lines and human microvascular endothelial cells (HMVECs) exposed or not to ionizing irradiation. After counting and characterization, we evaluated the effects of exposure of GSCs to EVs isolated from endothelial cells and vice versa. The RNA content of EVs isolated from GSC lines and HMVECs exposed or not to ionizing irradiation, was analyzed by RNA-Seq. Periostin (POSTN) and Filamin-B (FLNB) emerged in gene set enrichment analysis as the most interesting transcripts enriched after irradiation in endothelial cell-derived EVs and GSC-derived EVs, respectively. POSTN and FLNB expression was modulated and the effects were analyzed by in vitro assays. RESULTS: We confirmed that ionizing radiations increased EV secretion by GSCs and normal endothelial cells, affected the contents of and response to cellular secreted EVs. Particularly, GSC-derived EVs decreased radiation-induced senescence and promoted migration in HMVECs whereas, endothelial cell-derived EVs promoted tumorigenic properties and endothelial differentiation of GSCs. RNA-Seq analysis of EV content, identified FLNB and POSTN as transcripts enriched in EVs isolated after irradiation from GSCs and HMVECs, respectively. Assays performed on POSTN overexpressing GSCs confirmed the ability of POSTN to mimic the effects of endothelial cell-derived EVs on GSC migration and clonogenic abilities and transdifferentiation potential. Functional assays performed on HMVECs after silencing of FLNB supported its role as mediator of the effects of GSC-derived EVs on senescence and migration. CONCLUSION: In this study, we identified POSTN and FLNB as potential mediators of the effects of EVs on GSC and HMVEC behavior confirming that EVs play a crucial role in the intercellular communication by delivering bioactive molecules in the surrounding milieu modulating tumor microenvironment.

6.
Immunology ; 171(2): 198-211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37884280

RESUMEN

Glioblastoma, isocitrate dehydrogenase-wildtype (GB), is the most common and aggressive primary brain malignancy with poor outcome. Immune checkpoint inhibitors (ICIs) have been tested in GB and, despite disappointing results, the identification of a small subgroup of responders underlies the need to improve our understanding of the tumour microenvironment (TME) immunity. This study aimed to determine whether the expression of selected immune checkpoints on tissue-resident memory T cells (Trm) may predict patient outcome. We conducted a single cohort observational study. Tumour samples were collected from 45 patients with histologically confirmed GB (WHO grade 4) and processed to obtain single-cell suspensions. Patients were assessed for the correlation of Trm phenotype with overall survival (OS) or progression-free survival (PFS) using multiparametric flow cytometry and uni/multivariate analyses. Levels of Trm expressing programmed cell death protein 1 (PD1) and T cell immunoglobulin and mucin domain-containing protein 3 (TIM3) were found to be linked to clinical outcome. Low frequency of Trm expressing PD1 or TIM3 or both markers defined subgroups as independent positive prognostic factors for patient survival. On multivariate analysis, low CD8+CD103+PD1+TIM3+ Trm and Karnofsky performance status (KPS) ≥70 were confirmed to be the most predictive independent factors associated with longer OS (hazard ratios-HR [95%CI]: 0.14 [0.04-0.52] p < 0.001, 0.39 [0.16-0.96] p = 0.04, respectively). The CD8+CD103+ Trm subgroups were also age-related predictors for survival in GB.


Asunto(s)
Glioblastoma , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Pronóstico , Linfocitos T CD8-positivos , Microambiente Tumoral
7.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092755

RESUMEN

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Piruvato Quinasa/metabolismo , Línea Celular Tumoral , Metabolismo Energético
8.
Cancers (Basel) ; 15(18)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37760463

RESUMEN

Clival chordomas are rare but aggressive skull base tumors that pose significant treatment challenges and portend dismal prognosis. The aim of this study was to highlight the advantages and limitations of available treatments, to furnish prognostic indicators, and to shed light on novel therapeutic strategies. We conducted a retrospective study of clival chordomas that were surgically treated at our institution from 2003 to 2022; for comparison purposes, we provided a systematic review of published surgical series and, finally, we reviewed the most recent advancements in molecular research. A total of 42 patients underwent 85 surgeries; median follow-up was 15.8 years, overall survival rate was 49.9% at 10 years; meanwhile, progression-free survival was 26.6% at 10 years. A significantly improved survival was observed in younger patients (<50 years), in tumors with Ki67 ≤ 5% and when adjuvant radiotherapy was performed. To conclude, clival chordomas are aggressive tumors in which surgery and radiotherapy play a fundamental role while molecular targeted drugs still have an ancillary position. Recognizing risk factors for recurrence and performing a molecular characterization of more aggressive lesions may be the key to future effective treatment.

9.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511496

RESUMEN

In recent years, research on brain cancers has turned towards the study of the interplay between the tumor and its host, the normal brain. Starting from the establishment of a parallelism between neurogenesis and gliomagenesis, the influence of neuronal activity on the development of brain tumors, particularly gliomas, has been partially unveiled. Notably, direct electrochemical synapses between neurons and glioma cells have been identified, paving the way for new approaches for the cure of brain cancers. Since this novel field of study has been defined "cancer neuroscience", anticancer therapeutic approaches exploiting these discoveries can be referred to as "cancer neuromodulation". In the present review, we provide an up-to-date description of the novel findings and of the therapeutic neuromodulation perspectives in cancer neuroscience. We focus both on more traditional oncologic approaches, aimed at modulating the major pathways involved in cancer neuroscience through drugs or genetic engineering techniques, and on electric stimulation proposals; the latter is at the cutting-edge of neuro-oncology.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Encéfalo/patología , Glioma/patología
10.
J Neurooncol ; 163(1): 47-59, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37140883

RESUMEN

PURPOSE: Patient-derived cancer cell lines can be very useful to investigate genetic as well as epigenetic mechanisms of transformation and to test new drugs. In this multi-centric study, we performed genomic and transcriptomic characterization of a large set of patient-derived glioblastoma (GBM) stem-like cells (GSCs). METHODS: 94 (80 I surgery/14 II surgery) and 53 (42 I surgery/11 II surgery) GSCs lines underwent whole exome and trascriptome analysis, respectively. RESULTS: Exome sequencing revealed TP53 as the main mutated gene (41/94 samples, 44%), followed by PTEN (33/94, 35%), RB1 (16/94, 17%) and NF1 (15/94, 16%), among other genes associated to brain tumors. One GSC sample bearing a BRAF p.V600E mutation showed sensitivity in vitro to a BRAF inhibitor. Gene Ontology and Reactome analysis uncovered several biological processes mostly associated to gliogenesis and glial cell differentiation, S - adenosylmethionine metabolic process, mismatch repair and methylation. Comparison of I and II surgery samples disclosed a similar distribution of mutated genes, with an overrepresentation of mutations in mismatch repair, cell cycle, p53 and methylation pathways in I surgery samples, and of mutations in receptor tyrosine kinase and MAPK signaling pathways in II surgery samples. Unsupervised hierarchical clustering of RNA-seq data produced 3 clusters characterized by distinctive sets of up-regulated genes and signaling pathways. CONCLUSION: The availability of a large set of fully molecularly characterized GCSs represents a valuable public resource to support the advancement of precision oncology for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Transcriptoma , Proteínas Proto-Oncogénicas B-raf/genética , Células Madre Neoplásicas/patología , Medicina de Precisión , Neoplasias Encefálicas/patología
11.
Expert Rev Mol Med ; 25: e10, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919343

RESUMEN

Glioblastoma (GBM) is the most frequent adult malignant brain tumour and despite different therapeutic efforts, the median overall survival still ranges from 14 to 18 months. Thus, new therapeutic strategies are urgently needed. However, the identification of cancer-specific targets is particularly challenging in GBM, due to the high heterogeneity of this tumour in terms of histopathological, molecular, genetic and epigenetic features. Telomerase reactivation is a hallmark of malignant glioma. An activating mutation of the hTERT gene, encoding for the active subunit of telomerase, is one of the molecular criteria to establish a diagnosis of GBM, IDH-wildtype, in the 2021 WHO classification of central nervous system tumours. Telomerase inhibition therefore represents, at least theoretically, a promising strategy for GBM therapy: pharmacological compounds, as well as direct gene expression modulation therapies, have been successfully employed in in vitro and in vivo settings. Unfortunately, the clinical applications of telomerase inhibition in GBM are currently scarce. The aim of the present systematic review is to provide an up-to-date report on the studies investigating telomerase inhibition as a therapeutic strategy for malignant glioma in order to foster the future translational and clinical research on this topic.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Telomerasa , Adulto , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Glioma/tratamiento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Glioblastoma/terapia , Terapia Genética
12.
J Pers Med ; 13(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36836440

RESUMEN

Grade 3 meningiomas are rare malignant tumors that can originate de novo or from the progression of lower grade meningiomas. The molecular bases of anaplasia and progression are poorly known. We aimed to report an institutional series of grade 3 anaplastic meningiomas and to investigate the evolution of molecular profile in progressive cases. Clinical data and pathologic samples were retrospectively collected. VEGF, EGFR, EGFRvIII, PD-L1; and Sox2 expression; MGMT methylation status; and TERT promoter mutation were assessed in paired meningioma samples collected from the same patient before and after progression using immunohistochemistry and PCR. Young age, de novo cases, origin from grade 2 in progressive cases, good clinical status, and unilateral side, were associated with more favorable outcomes. In ten progressive meningiomas, by comparing molecular profile before and after progression, we identified two subgroups of patients, one defined by Sox2 increase, suggesting a stem-like, mesenchymal phenotype, and another defined by EGFRvIII gain, suggesting a committed progenitor, epithelial phenotype. Interestingly, cases with Sox2 increase had a significantly shortened survival compared to those with EGFRvIII gain. PD-L1 increase at progression was also associated with worse prognosis, portending immune escape. We thus identified the key drivers of meningioma progression, which can be exploited for personalized treatments.

13.
Neurosurg Rev ; 46(1): 37, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645525

RESUMEN

The role of surgery in the management of primary central nervous system lymphomas (PCNSL) is currently confined to diagnosis. However, over recent years, an increasing number of papers have suggested a possible positive prognostic impact of surgery in selected cases. The present work aims to perform a meta-analysis of the available literature evidence. A meta-analysis with meta-regression on the role of surgical resection compared to biopsy in the management of PCNSL was conducted according to the PRISMA statement, searching MEDLINE via PubMed and Embase. The random effect model was used. The quality of evidence was assessed using the GRADE framework. After screening 1395 records, we included 11 papers in our analysis. Patients who underwent surgical resection harbored superficial and single-lesion tumors. At 1-, 2-, and 5-year follow-up, progression-free survival did not differ between the two groups, while overall survival favored resection, even if in a non-significant fashion. Meta-regression analysis showed that the overall survival rate at 2 years, but not at 1 or 5 years, was significantly influenced by tumor location. There were no differences in terms of age, sex, Karnofsky performance status, adjuvant therapy, or procedure-related complications. Overall, the quality of evidence is low. The results of the present meta-analysis do not change the current standard of care for PCNSL. However, surgery could be non-inferior to biopsy with an acceptable risk profile in selected patients harboring single and superficial lesions. The low quality of evidence prompts future randomized studies.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Linfoma , Humanos , Biopsia , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/cirugía , Neoplasias Encefálicas/cirugía , Linfoma/diagnóstico , Linfoma/cirugía , Sistema Nervioso Central
15.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674623

RESUMEN

Literature data on the administration of conventional high-dose beams with (FF) or without flattening filters (FFF) show conflicting results on biological effects at the cellular level. To contribute to this field, we irradiated V79 Chinese hamster lung fibroblasts and two patient-derived glioblastoma stem-like cell lines (GSCs-named #1 and #83) using a clinical 10 MV accelerator with FF (at 4 Gy/min) and FFF (at two dose rates 4 and 24 Gy/min). Cell killing and DNA damage induction, determined using the γ-H2AX assay, and gene expression were studied. No significant differences in the early survival of V79 cells were observed as a function of dose rates and FF or FFF beams, while a trend of reduction in late survival was observed at the highest dose rate with the FFF beam. GSCs showed similar survival levels as a function of dose rates, both delivered in the FFF regimen. The amount of DNA damage measured for both dose rates after 2 h was much higher in line #1 than in line #83, with statistically significant differences between the two dose rates only in line #83. The gene expression analysis of the two GSC lines indicates gene signatures mimicking the prognosis of glioblastoma (GBM) patients derived from a public database. Overall, the results support the current use of FFF and highlight the possibility of identifying patients with candidate gene signatures that could benefit from irradiation with FFF beams at a high dose rate.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Pulmón , Dosificación Radioterapéutica
16.
Eur Radiol ; 33(6): 4158-4166, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36602570

RESUMEN

OBJECTIVES: To test whether quantitative susceptibility mapping (QSM) of cerebral cavernous malformations (CCMs) assessed at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. METHODS: Familial CCM patients were enrolled in the longitudinal multicentre study Treat-CCM. The 3-T MRI scan allowed performing a semi-automatic segmentation of CCMs and computing the maximum susceptibility in each segmented CCM (QSMmax) at baseline. CCMs were classified as haemorrhagic and non-haemorrhagic at baseline and then subclassified according to the 1-year (t1) evolution. Between-group differences were tested, and the diagnostic accuracy of QSMmax in predicting the presence or absence of haemorrhagic signs in CCMs was calculated with ROC analyses. RESULTS: Thirty-three patients were included in the analysis, and a total of 1126 CCMs were segmented. QSMmax was higher in haemorrhagic CCMs than in non-haemorrhagic CCMs (p < 0.001). In haemorrhagic CCMs at baseline, the accuracy of QSMmax in differentiating CCMs that were still haemorrhagic from CCMs that recovered from haemorrhage at t1 calculated as area under the curve (AUC) was 0.78 with sensitivity 62.69%, specificity 82.35%, positive predictive value (PPV) 93.3% and negative predictive value (NPV) 35.9% (QSMmax cut-off ≥ 1462.95 ppb). In non-haemorrhagic CCMs at baseline, AUC was 0.91 in differentiating CCMs that bled at t1 from stable CCMs with sensitivity 100%, specificity 81.9%, PPV 5.1%, and NPV 100% (QSMmax cut-off ≥ 776.29 ppb). CONCLUSIONS: The QSMmax in CCMs at baseline showed high accuracy in predicting the presence or absence of haemorrhagic signs at 1-year follow-up. Further effort is required to test the role of QSM in follow-up assessment and therapeutic trials in multicentre CCM studies. KEY POINTS: • QSM in semi-automatically segmented CCM was feasible. • The maximum magnetic susceptibility in a single CCM at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. • Multicentric studies are needed to enforce the role of QSM in predicting the CCMs' haemorrhagic evolution in patients affected by familial and sporadic forms.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Proyectos Piloto , Imagen por Resonancia Magnética
17.
Lancet Neurol ; 22(1): 35-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36403580

RESUMEN

BACKGROUND: Observations in people with cerebral cavernous malformations, and in preclinical models of this disorder, suggest that the ß-blocker propranolol might reduce the risk of intracerebral haemorrhage. We aimed to evaluate the safety and efficacy of prolonged treatment with propranolol to reduce the incidence of symptomatic intracerebral haemorrhage or focal neurological deficit in people with familial cerebral cavernous malformations. METHODS: We conducted a randomised, open-label, blinded-endpoint, phase 2 pilot trial (Treat_CCM) at six national reference centres for rare diseases in Italy. People aged 18 years or older with symptomatic familial cerebral cavernous malformation were eligible for enrolment. Participants were randomly assigned (2:1) to receive either oral propranolol (20-320 mg daily) plus standard care (intervention group), or standard care alone (control group), for 24 months. Participants, caregivers, and investigators were aware of treatment group assignment. Participants had clinical assessments and 3 T brain MRI at baseline and at 12 and 24 months. The primary outcome was new occurrence of symptomatic intracerebral haemorrhage or focal neurological deficit attributable to cerebral cavernous malformation over 24 months. Outcome assessors were masked to treatment group assignment. The primary analysis was done in the intention-to-treat population. Because of the pilot study design, we chose a one-sided 80% CI, which could either exclude a clinically meaningful effect or show a signal of efficacy. This trial is registered with EudraCT, 2017-003595-30, and ClinicalTrials.gov, NCT03589014, and is closed to recruitment. FINDINGS: Between April 11, 2018, and Dec 5, 2019, 95 people were assessed for eligibility and 83 were enrolled, of whom 57 were assigned to the propranolol plus standard care group and 26 to the standard care alone group. The mean age of participants was 46 years (SD 15); 48 (58%) were female and 35 (42%) were male. The incidence of symptomatic intracerebral haemorrhage or focal neurological deficit was 1·7 (95% CI 1·4-2·0) cases per 100 person-years (two [4%] of 57 participants) in the propranolol plus standard care group and 3·9 (3·1-4·7) per 100 person-years (two [8%] of 26) in the standard care alone group (univariable hazard ratio [HR] 0·43, 80% CI 0·18-0·98). The univariable HR showed a signal of efficacy, according to predefined criteria. The incidence of hospitalisation did not differ between groups (8·2 cases [95% CI 7·5-8·9] per 100 person-years in the propranolol plus standard care group vs 8·2 [95% CI 7·1-9·3] per 100 person-years in the standard care alone group). One participant in the standard care alone group died of sepsis. Three participants in the propranolol plus standard care group discontinued propranolol due to side-effects (two reported hypotension and one reported weakness). INTERPRETATION: Propranolol was safe and well tolerated in this population. Propranolol might be beneficial for reducing the incidence of clinical events in people with symptomatic familial cerebral cavernous malformations, although this trial was not designed to be adequately powered to investigate efficacy. A definitive phase 3 trial of propranolol in people with symptomatic familial cerebral cavernous malformations is justified. FUNDING: Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro, Swedish Science Council, Knut and Alice Wallenberg Foundation, CARIPLO Foundation, Italian Ministry of Health.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Masculino , Femenino , Persona de Mediana Edad , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/tratamiento farmacológico , Propranolol/farmacología , Propranolol/uso terapéutico , Proyectos Piloto , Resultado del Tratamiento , Hemorragia Cerebral/inducido químicamente , Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/tratamiento farmacológico
18.
J Neurosurg Sci ; 67(1): 103-107, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32550606

RESUMEN

BACKGROUND: Failure of clinical trials with targeted therapies in glioblastoma (GBM) is probably related to the enrollment of molecularly unselected patients. In this study we report the results of a precision medicine protocol in recurrent GBM. METHODS: We prospectively evaluated 34 patients with recurrent GBM. We determined the expression of vascular endothelial growth factor (VEGF), epidermal growth factor receptor variant III (EGFRvIII), and phosphatase and tensin homolog (PTEN). According to the molecular pattern we administered bevacizumab alone in patients with VEGF overexpression, absence of EGFRvIII, and normal PTEN (group A; N.=16); bevacizumab + erlotinib in patients with VEGF overexpression, expression of EGFRvIII, and normal PTEN (group B; N.=14); and bevacizumab + sirolimus in patients with VEGF overexpression and loss of PTEN, irrespective of the EGFRvIII status (group C; N.=4). We evaluated the response rate, the clinical benefit rate, the 6-month progression-free survival (PFS-6), the 12-month PFS (PFS-12) and the safety profile of the treatment. Moreover, we compared our results with the ones of EORTC 26101 trial. RESULTS: Response rate was 50% in the whole cohort with the highest rate in group C (75%). Clinical benefit rate was 71% with the highest rate in group C (75%). PFS-6 was 56% in the whole cohort with the highest rate in group B (64%). PFS-12 was 21% in the whole cohort with the highest rate in group B (29%). When comparing our results with those from the combination arm of the EORTC 26101 trial we found a significantly higher PFS-6 and PFS-12 in our cohort. CONCLUSIONS: The precision medicine protocol for recurrent GBM is feasible and leads to improved results if compared with studies lacking molecular selection.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Bevacizumab/uso terapéutico , Factor A de Crecimiento Endotelial Vascular , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Clorhidrato de Erlotinib/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico
19.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551679

RESUMEN

Glioblastoma (GBM), the most malignant primary brain tumor in adults. Although not frequent, it has a relevant social impact because the peak incidence coincides with the age of professional maturity. A number of novel treatments have been proposed, yet clinical trials have been disappointing. Recently, a phase II clinical trial (REGOMA) demonstrated that the multikinase inhibitor regorafenib significantly increased the median overall survival (OS) of GBM patients when compared to lomustine-treated patients. On this basis, the National Comprehensive Cancer Network (NCCN) 2020 Guidelines included regorafenib as a preferred regimen in relapsed GBM treatment. Despite the use in GBM patients' therapy, little is known about the molecular mechanisms governing regorafenib effectiveness on the GBM tumor. Here we report an in vitro characterization of GBM tumor cells' response to regorafenib, performed both on cell lines and on patient-derived glioma stem cells (GSCs). Overall, regorafenib significantly reduced cell growth of 2D tumor cell cultures and of 3D tumor spheroids. Strikingly, this effect was accompanied by transcriptional regulation of epithelial to mesenchymal transition (EMT) genes and by an increased ability of surviving tumor cells to invade the surrounding matrix. Taken together, our data suggest that regorafenib limits cell growth, however, it might induce an invasive phenotype.

20.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36499683

RESUMEN

The survival of patients with glioblastoma (GBM) is poor. The main cause is the presence of glioma stem cells (GSCs), exceptionally resistant to temozolomide (TMZ) treatment. This last may be related to the heterogeneous expression of ion channels, among them TRPML2. Its mRNA expression was evaluated in two different neural stem cell (NS/PC) lines and sixteen GBM stem-like cells by qRT-PCR. The response to TMZ was evaluated in undifferentiated or differentiated GSCs, and in TRPML2-induced or silenced GSCs. The relationship between TRPML2 expression and responsiveness to TMZ treatment was evaluated by MTT assay showing that increased TRPML2 mRNA levels are associated with resistance to TMZ. This research was deepened by qRT-PCR and western blot analysis. PI3K/AKT and JAK/STAT pathways as well as ABC and SLC drug transporters were involved. Finally, the relationship between TRPML2 expression and overall survival (OS) and progression-free survival (PFS) in patient-derived GSCs was evaluated by Kaplan-Meier analysis. The expression of TRPML2 mRNA correlates with worse OS and PFS in GBM patients. Thus, the expression of TRPML2 in GSCs influences the responsiveness to TMZ in vitro and affects OS and PFS in GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Temozolomida/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/metabolismo , ARN Mensajero/metabolismo , Resistencia a Antineoplásicos , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...