Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Evol ; 91(6): 897-911, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017120

RESUMEN

Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.


Asunto(s)
Parásitos , Theileria parva , Theileria , Animales , Theileria/genética , Parásitos/genética , Theileria parva/genética , Familia de Multigenes/genética , Cromosomas
2.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34507950

RESUMEN

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Vacunas Antiprotozoos/inmunología , Theileria parva/fisiología , Theileriosis/inmunología , Animales , Presentación de Antígeno , Antígenos de Protozoos/inmunología , Bovinos , Células Cultivadas , Mapeo Epitopo , Epítopos de Linfocito T/inmunología , Ensayos Analíticos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II , Activación de Linfocitos , Biblioteca de Péptidos , Péptidos/síntesis química , Péptidos/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T
3.
PLoS Negl Trop Dis ; 14(10): e0008781, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33119590

RESUMEN

Theileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ~54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is ~20 kb larger than the genome from the reference, cattle-derived, Muguga strain, and contains 25 new potential genes. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average Wright's fixation index (FST), genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species. These findings present clear implications for vaccine development, further demonstrated by the ability to assemble nearly all known antigens in the buffalo-derived strain, which will be critical in design of next generation vaccines. The DNA capture approach used provides a clear advantage in specificity over alternative T. parva DNA enrichment methods used previously, such as those that utilize schizont purification, is less labor intensive, and enables in-depth comparative genomics in this apicomplexan parasite.


Asunto(s)
Búfalos/parasitología , ADN Protozoario/genética , Variación Genética , Theileria parva/genética , Theileriosis/parasitología , Animales , Bovinos , Genoma de Protozoos , Genotipo , Especificidad de la Especie , Theileria parva/clasificación , Theileria parva/aislamiento & purificación
4.
BMC Genomics ; 21(1): 279, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245418

RESUMEN

BACKGROUND: The apicomplexan parasite Theileria parva causes a livestock disease called East coast fever (ECF), with millions of animals at risk in sub-Saharan East and Southern Africa, the geographic distribution of T. parva. Over a million bovines die each year of ECF, with a tremendous economic burden to pastoralists in endemic countries. Comprehensive, accurate parasite genome annotation can facilitate the discovery of novel chemotherapeutic targets for disease treatment, as well as elucidate the biology of the parasite. However, genome annotation remains a significant challenge because of limitations in the quality and quantity of the data being used to inform the location and function of protein-coding genes and, when RNA data are used, the underlying biological complexity of the processes involved in gene expression. Here, we apply our recently published RNAseq dataset derived from the schizont life-cycle stage of T. parva to update structural and functional gene annotations across the entire nuclear genome. RESULTS: The re-annotation effort lead to evidence-supported updates in over half of all protein-coding sequence (CDS) predictions, including exon changes, gene merges and gene splitting, an increase in average CDS length of approximately 50 base pairs, and the identification of 128 new genes. Among the new genes identified were those involved in N-glycosylation, a process previously thought not to exist in this organism and a potentially new chemotherapeutic target pathway for treating ECF. Alternatively-spliced genes were identified, and antisense and multi-gene family transcription were extensively characterized. CONCLUSIONS: The process of re-annotation led to novel insights into the organization and expression profiles of protein-coding sequences in this parasite, and uncovered a minimal N-glycosylation pathway that changes our current understanding of the evolution of this post-translational modification in apicomplexan parasites.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Theileria parva/genética , Empalme Alternativo , Animales , Redes Reguladoras de Genes , Genoma de Protozoos , Glicosilación , Ganado/parasitología , Análisis de Secuencia de ARN , Theileria parva/metabolismo
5.
J Surg Res ; 242: 118-128, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31075656

RESUMEN

BACKGROUND: Gut bacteria are strongly suspected to play a key role in the pathogenesis of Crohn's disease (CD). Studies have demonstrated alterations in the gut microbiota in this patient population. The purpose of this study was to characterize the gut microbiota of fistulizing perianal CD. MATERIALS AND METHODS: Stool and fistula samples were obtained from patients undergoing surgery for CD-related anorectal fistulae. Microbial compositions of matched stool and fistula samples were characterized using 16S rRNA gene profiling. The effect of sample type, patient gender, disease classification (Montreal A/B), disease activity (Harvey Bradshaw Index), antibiotic use, and presence of active proctitis on microbial composition was assessed. RESULTS: Samples were obtained from 18 patients. Bacteroides was the most abundant genera across all samples collected, followed by Streptococcus and Bifidobacterium. Bifidobacterium was present at significantly higher levels in fecal samples than fistula samples, whereas Achromobacter and Corynebacterium were present at significantly higher levels in fistula samples. Antibiotic, but not thiopurine or antitumor necrosis factor medication, exposure affected the gut microbial composition. Patient gender, disease classification, disease activity, and presence of active proctitis did not alter stool or fistula microbiota. CONCLUSIONS: Our data show that the gut microbiota within CD-related anorectal fistulae is distinct from that in stool samples obtained from the same patients. We also observe a dysbiosis in patients treated with antibiotics compared with those not treated with antibiotics.


Asunto(s)
Enfermedad de Crohn/complicaciones , Disbiosis/microbiología , Microbioma Gastrointestinal , Fístula Rectal/microbiología , Adolescente , Adulto , Antibacterianos/efectos adversos , Bacterias/genética , Bacterias/aislamiento & purificación , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/microbiología , Disbiosis/inducido químicamente , Heces/microbiología , Femenino , Humanos , Mucosa Intestinal/microbiología , Masculino , ARN Ribosómico 16S/aislamiento & purificación , Fístula Rectal/cirugía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...