Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 985, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138259

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is one of the major regulators of low-density lipoprotein receptor (LDLR). Information on role and regulation of PCSK9 in lung is very limited. Our study focuses on understanding the role and regulation of PCSK9 in the lung. PCSK9 levels are higher in Bronchoalveolar lavage fluid (BALF) of smokers with or without chronic obstructive pulmonary diseases (COPD) compared to BALF of nonsmokers. PCSK9-stimulated cells induce proinflammatory cytokines and activation of MAPKp38. PCSK9 transcripts are highly expressed in healthy individuals compared to COPD, pulmonary fibrosis or pulmonary systemic sclerosis. Cigarette smoke extract reduce PCSK9 levels in undifferentiated pulmonary bronchial epithelial cells (PBEC) but induce in differentiated PBEC. PCSK9 inhibition affect biological pathways, induces lipid peroxidation, and higher level of apoptosis in response to staurosporine. Our results suggest that higher levels of PCSK9 in BALF acts as an inflammatory marker. Furthermore, extracellular and intracellular PCSK9 play different roles.


Asunto(s)
Inflamación , Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Inflamación/metabolismo , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Muerte Celular , Metabolismo de los Lípidos , Masculino , Apoptosis , Células Epiteliales/metabolismo , Femenino
2.
Respir Res ; 25(1): 49, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245732

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) has the highest increased risk due to household air pollution arising from biomass fuel burning. However, knowledge on COPD patho-mechanisms is mainly limited to tobacco smoke exposure. In this study, a repeated direct wood smoke (WS) exposure was performed using normal- (bro-ALI) and chronic bronchitis-like bronchial (bro-ALI-CB), and alveolar (alv-ALI) lung mucosa models at air-liquid interface (ALI) to assess broad toxicological end points. METHODS: The bro-ALI and bro-ALI-CB models were developed using human primary bronchial epithelial cells and the alv-ALI model was developed using a representative type-II pneumocyte cell line. The lung models were exposed to WS (10 min/exposure; 5-exposures over 3-days; n = 6-7 independent experiments). Sham exposed samples served as control. WS composition was analyzed following passive sampling. Cytotoxicity, total cellular reactive oxygen species (ROS) and stress responsive NFkB were assessed by flow cytometry. WS exposure induced changes in gene expression were evaluated by RNA-seq (p ≤ 0.01) followed by pathway enrichment analysis. Secreted levels of proinflammatory cytokines were assessed in the basal media. Non-parametric statistical analysis was performed. RESULTS: 147 unique compounds were annotated in WS of which 42 compounds have inhalation toxicity (9 very high). WS exposure resulted in significantly increased ROS in bro-ALI (11.2%) and bro-ALI-CB (25.7%) along with correspondingly increased NFkB levels (bro-ALI: 35.6%; bro-ALI-CB: 18.1%). A total of 1262 (817-up and 445-down), 329 (141-up and 188-down), and 102 (33-up and 69-down) genes were differentially regulated in the WS-exposed bro-ALI, bro-ALI-CB, and alv-ALI models respectively. The enriched pathways included the terms acute phase response, mitochondrial dysfunction, inflammation, oxidative stress, NFkB, ROS, xenobiotic metabolism of AHR, and chronic respiratory disorder. The enrichment of the 'cilium' related genes was predominant in the WS-exposed bro-ALI (180-up and 7-down). The pathways primary ciliary dyskinesia, ciliopathy, and ciliary movement were enriched in both WS-exposed bro-ALI and bro-ALI-CB. Interleukin-6 and tumor necrosis factor-α were reduced (p < 0.05) in WS-exposed bro-ALI and bro-ALI-CB. CONCLUSION: Findings of this study indicate differential response to WS-exposure in different lung regions and in chronic bronchitis, a condition commonly associated with COPD. Further, the data suggests ciliopathy as a candidate pathway in relation to WS-exposure.


Asunto(s)
Bronquitis Crónica , Ciliopatías , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Bronquitis Crónica/inducido químicamente , Bronquitis Crónica/metabolismo , Humo/efectos adversos , Madera/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Membrana Mucosa , Productos de Tabaco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA