Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Curr Opin HIV AIDS ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38884255

RESUMEN

PURPOSE OF REVIEW: To review novel experimental approaches for studying host:microbe interactions and their role in intestinal and systemic inflammation in people living with HIV (PLWH). RECENT FINDINGS: Inflammation in PLWH is impacted by interactions between the microbiome, the intestinal epithelium, and immune cells. This complex interplay is not fully understood and requires a variety of analytical techniques to study. Using a multiomic systems biology approach provides hypothesis generating data on host:microbe interactions that can be used to guide further investigation. The direct interactions between host cells and microbes can be elucidated using peripheral blood mononuclear cells (PBMCs), lamina propria mononuclear cells (LPMC's) or human intestinal organoids (HIO). Additionally, the broader relationship between the host and the microbiome can be explored using animal models such as nonhuman primates and germ-free and double humanized mice. SUMMARY: To explore complex host:microbe relationships, hypotheses are generated and investigations are guided by multiomic data, while causal components are identified using in-vitro and in-vivo assays.

2.
Microbiome ; 12(1): 18, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310301

RESUMEN

BACKGROUND: The widespread availability of antiretroviral therapy (ART) has dramatically reduced mortality and improved life expectancy for people living with HIV (PLWH). However, even with HIV-1 suppression, chronic immune activation and elevated inflammation persist and have been linked to a pro-inflammatory gut microbiome composition and compromised intestinal barrier integrity. PLWH in urban versus rural areas of sub-Saharan Africa experience differences in environmental factors that may impact the gut microbiome and immune system, in response to ART, yet this has not previously been investigated in these groups. To address this, we measured T cell activation/exhaustion/trafficking markers, plasma inflammatory markers, and fecal microbiome composition in PLWH and healthy participants recruited from an urban clinic in the city of Harare, Zimbabwe, and a district hospital that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of first-line ART and the antibiotic cotrimoxazole or were ART-experienced at both timepoints. RESULTS: Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed with ART-induced viral suppression, these changes were much more pronounced in the urban versus the rural area. Gut microbiome composition was the most highly altered from healthy controls in ART experienced PLWH, and characterized by both reduced alpha diversity and altered composition. However, gut microbiome composition showed a pronounced relationship with T cell activation and exhaustion in ART-naïve PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection. Elevated immune exhaustion after 24 weeks of ART did correlate with both living in the rural location and a more Prevotella-rich/Bacteroides-poor microbiome type, suggesting a potential role for rural-associated microbiome differences or their co-variates in the muted improvements in immune exhaustion in the rural area. CONCLUSION: Successful ART was less effective at reducing gut microbiome-associated inflammation and T cell activation in PLWH in rural versus urban Zimbabwe, suggesting that individuals on ART in rural areas of Zimbabwe may be more vulnerable to co-morbidity related to sustained immune dysfunction in treated infection. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH , Humanos , Zimbabwe , Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Inflamación
4.
Res Sq ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693491

RESUMEN

The widespread availability of antiretroviral therapy (ART) for people living with HIV (PLWH) has dramatically reduced mortality and improved life expectancy. However, even with suppression of HIV-1 replication, chronic immune activation and elevated inflammation persist. Chronic immune activation has been linked to a pro-inflammatory gut microbiome composition, exacerbated by compromised intestinal barrier integrity that occurs after HIV infection. Individuals living in urban versus rural areas of sub-Saharan Africa have differences in environmental factors such as water source or diet that may impact gut microbiome composition, yet immune phenotype and gut microbiome composition response to ART in PLWH living in rural versus urban areas of sub-Saharan Africa have not been compared. Here, we measured immune phenotypes and fecal microbiome composition in PLWH and healthy participants recruited from the urban Mabvuku polyclinic in the city of Harare, Zimbabwe and the Mutoko District hospital located in a district 146 km from Harare that services surrounding rural villages. PLWH were either ART naïve at baseline and sampled again after 24 weeks of treatment with efavirenz/lamivudine/tenofovir disoproxil fumarate (EFV/3TC/TDF) and the prophylactic antibiotic cotrimoxazole or were ART experienced at both timepoints. Although expected reductions in the inflammatory marker IL-6, T-cell activation, and exhaustion were observed in individuals who had suppressed HIV-1 with treatment, these changes were significant only when considering individuals in the urban and not the rural area. Gut microbiome composition showed more marked differences from healthy controls in the ART experienced compared to ART naïve cohort, and consistent longitudinal changes were also observed in ART naïve PLWH after 24 weeks of treatment, including a reduction in alpha diversity and altered composition. However, gut microbiome composition showed a more pronounced relationship with chronic immune activation and exhaustion phenotypes in the ART naïve compared to ART experienced PLWH, suggesting a particularly significant role for the gut microbiome in disease progression in uncontrolled infection.

6.
Microb Ecol ; 85(4): 1620-1629, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35596750

RESUMEN

Bacterial zwitterionic capsular polysaccharides (ZPS), such as polysaccharide A (PSA) of the intestinal commensal Bacteroides fragilis, have been shown to modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). We previously used a genomic screen to identify diverse host-associated bacteria with the predicted genetic capacity to produce ZPSs related to PSA of B. fragilis and hypothesized that genetic disruption (KO) of a key functional gene within these operons would reduce the anti-inflammatory activity of these bacteria. We found that ZPS-KO bacteria in two common gut commensals, Bacteroides uniformis and Bacteroides cellulosilyticus, had a reduced ability to induce Tregs and IL-10 in stimulations of human peripheral blood mononuclear cells (PBMCs). Additionally, we found that macrophage stimulated with either wildtype B. fragilis or B. uniformis produced significantly more IL-10 than KOs, indicating a potentially novel function of ZPS of shifting the cytokine response in macrophages to a more anti-inflammatory state. These findings support the hypothesis that these related ZPS may represent a shared strategy to modulate host immune responses.


Asunto(s)
Interleucina-10 , Leucocitos Mononucleares , Humanos , Interleucina-10/genética , Polisacáridos Bacterianos , Bacteroides fragilis/genética , Antiinflamatorios , Bacterias
7.
Front Immunol ; 13: 988125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36131937

RESUMEN

Double negative (DN) B cells (CD27-IgD-) comprise a heterogenous population of DN1, DN2, and the recently described DN3 and DN4 subsets. In autoimmune disease, DN2 cells are reported to be precursors to autoreactive antibody secreting cells and expansion of DN2 cells is linked to elevated interferon levels. Severe SARS-CoV-2 infection is characterized by elevated systemic levels of pro-inflammatory cytokines and serum autoantibodies and expansion of the DN2 subset in severe SARS-CoV-2 infection has been reported. However, the activation status, functional capacity and contribution to virally-induced autoantibody production by DN subsets is not established. Here, we validate the finding that severe SARS-CoV-2 infection is associated with a reduction in the frequency of DN1 cells coinciding with an increase in the frequency of DN2 and DN3 cells. We further demonstrate that with severe viral infection DN subsets are at a heightened level of activation, display changes in immunoglobulin class isotype frequency and have functional BCR signaling. Increases in overall systemic inflammation (CRP), as well as specific pro-inflammatory cytokines (TNFα, IL-6, IFNγ, IL-1ß), significantly correlate with the skewing of DN1, DN2 and DN3 subsets during severe SARS-CoV-2 infection. Importantly, the reduction in DN1 cell frequency and expansion of the DN3 population during severe infection significantly correlates with increased levels of serum autoantibodies. Thus, systemic inflammation during SARS-CoV-2 infection drives changes in Double Negative subset frequency, likely impacting their contribution to generation of autoreactive antibodies.


Asunto(s)
COVID-19 , Factor de Necrosis Tumoral alfa , Autoanticuerpos , Linfocitos B , Humanos , Inmunoglobulina D , Isotipos de Inmunoglobulinas , Inflamación , Interferones , Interleucina-6 , SARS-CoV-2
8.
Viruses ; 14(6)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35746639

RESUMEN

Primary simian varicella virus (SVV) infection and reactivation in nonhuman primates is a valuable animal model in the study of varicella zoster virus disease [varicella (chickenpox) and herpes zoster (shingles)]. To understand SVV pathogenesis in skin, we inoculated 10 rhesus macaques with SVV, resulting in varicella rash. After the establishment of latency, eight of the monkeys were immunosuppressed using tacrolimus with or without irradiation and prednisone and two monkeys were not immunosuppressed. Zoster rash developed in all immunosuppressed monkeys and in one non-immunosuppressed monkey. Five monkeys had recurrent zoster. During varicella and zoster, SVV DNA in skin scrapings ranged from 50 to 107 copies/100 ng of total DNA and 2-127 copies/100 ng of total DNA, respectively. Detection of SVV DNA in blood during varicella was more frequent and abundant compared to that of zoster. During varicella and zoster, SVV antigens colocalized with neurons expressing ß-III tubulin in epidermis, hair follicles, and sweat glands, suggesting axonal transport of the virus. Together, we have demonstrated that both SVV DNA and antigens can be detected in skin lesions during varicella and zoster, providing the basis for further studies on SVV skin pathogenesis, including immune responses and mechanisms of peripheral spread.


Asunto(s)
Varicela , Exantema , Herpes Zóster , Varicellovirus , Animales , Herpesvirus Humano 3/fisiología , Macaca mulatta , Varicellovirus/genética
9.
PLoS Pathog ; 18(5): e1010359, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617421

RESUMEN

As of January 2022, at least 60 million individuals are estimated to develop post-acute sequelae of SARS-CoV-2 (PASC) after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While elevated levels of SARS-CoV-2-specific T cells have been observed in non-specific PASC, little is known about their impact on pulmonary function which is compromised in the majority of these individuals. This study compares frequencies of SARS-CoV-2-specific T cells and inflammatory markers with lung function in participants with pulmonary PASC and resolved COVID-19 (RC). Compared to RC, participants with respiratory PASC had between 6- and 105-fold higher frequencies of IFN-γ- and TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells in peripheral blood, and elevated levels of plasma CRP and IL-6. Importantly, in PASC participants the frequency of TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells, which exhibited the highest levels of Ki67 indicating they were activity dividing, correlated positively with plasma IL-6 and negatively with measures of lung function, including forced expiratory volume in one second (FEV1), while increased frequencies of IFN-γ-producing SARS-CoV-2-specific T cells associated with prolonged dyspnea. Statistical analyses stratified by age, number of comorbidities and hospitalization status demonstrated that none of these factors affect differences in the frequency of SARS-CoV-2 T cells and plasma IL-6 levels measured between PASC and RC cohorts. Taken together, these findings demonstrate elevated frequencies of SARS-CoV-2-specific T cells in individuals with pulmonary PASC are associated with increased systemic inflammation and decreased lung function, suggesting that SARS-CoV-2-specific T cells contribute to lingering pulmonary symptoms. These findings also provide mechanistic insight on the pathophysiology of PASC that can inform development of potential treatments to reduce symptom burden.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inflamación , Interleucina-6 , Pulmón , Factor de Necrosis Tumoral alfa
10.
J Exp Med ; 219(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420627

RESUMEN

Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset. We asked whether SARS-CoV-2-associated inflammation impairs BND cell peripheral tolerance. To address this, PBMCs and plasma were collected from healthy controls, individuals immunized against SARS-CoV-2, or subjects with convalescent or severe SARS-CoV-2 infection. We demonstrate that BND cells from severely infected individuals are significantly activated, display reduced inhibitory receptor expression, and restored BCR signaling, indicative of a breach in anergy during viral infection, supported by increased levels of autoreactive antibodies. The phenotypic and functional BND cell alterations significantly correlate with increased inflammation in severe SARS-CoV-2 infection. Thus, autoreactive BND cells are released from peripheral tolerance with SARS-CoV-2 infection, likely as a consequence of robust systemic inflammation.


Asunto(s)
COVID-19 , Tolerancia Periférica , Anticuerpos Antivirales , Linfocitos B , Humanos , Inflamación/metabolismo , SARS-CoV-2
11.
Front Immunol ; 13: 1072720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605218

RESUMEN

Introduction: People living with HIV infection (PLWH) exhibit elevated levels of gastrointestinal inflammation. Potential causes of this inflammation include HIV infection and associated immune dysfunction, sexual behaviors among men who have sex with men (MSM) and gut microbiome composition. Methods: To better understand the etiology of gastrointestinal inflammation we examined levels of 28 fecal soluble immune factors (sIFs) and the fecal microbiome in well-defined cohorts of HIV seronegative MSM (MSM-SN), MSM with untreated HIV infection (MSM-HIV) and MSM with HIV on anti-retroviral treatment (MSMART). Additionally, fecal solutes from these participants were used to stimulate T-84 colonic epithelial cells to assess barrier function. Results: Both MSM cohorts with HIV had elevated levels of fecal calprotectin, a clinically relevant marker of GI inflammation, and nine inflammatory fecal sIFs (GM-CSF, ICAM-1, IL-1ß, IL-12/23, IL-15, IL-16, TNF-ß, VCAM-1, and VEGF). Interestingly, four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were significantly elevated in MSM-SN compared to seronegative male non-MSM. Conversely, IL-22 and IL-13, cytokines beneficial to gut health, were decreased in all MSM with HIV and MSM-SN respectively. Importantly, all of these sIFs significantly correlated with calprotectin, suggesting they play a role in GI inflammation. Principal coordinate analysis revealed clustering of fecal sIFs by MSM status and significant associations with microbiome composition. Additionally, fecal solutes from participants in the MSM-HIV cohort significantly decreased colonic transcellular fluid transport in vitro, compared to non-MSM-SN, and this decrease associated with overall sIF composition and increased concentrations of eight inflammatory sIFs in participants with HIV. Lastly, elevated levels of plasma, sCD14 and sCD163, directly correlated with decreased transcellular transport and microbiome composition respectively, indicating that sIFs and the gut microbiome are associated with, and potentially contribute to, bacterial translocation. Conclusion: Taken together, these data demonstrate that inflammatory sIFs are elevated in MSM, regardless of HIV infection status, and are associated with the gut microbiome and intestinal barrier function.


Asunto(s)
Infecciones por VIH , Microbiota , Minorías Sexuales y de Género , Humanos , Masculino , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Molécula 1 de Adhesión Intercelular , Homosexualidad Masculina , Factores Inmunológicos , Inflamación , Interleucina-12 , Complejo de Antígeno L1 de Leucocito
12.
Gut Microbes ; 13(1): 1997292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818131

RESUMEN

Men who have sex with men (MSM), regardless of HIV infection status, have an intestinal microbiome that is compositionally distinct from men who have sex with women (MSW) and women. We recently showed HIV-negative MSM have elevated levels of intestinal CD4+ T cells expressing CCR5, a critical co-receptor for HIV. Whether elevated expression of CCR5 is driven by the altered gut microbiome composition in MSM has not been explored. Here we used in vitro stimulation of gut Lamina Propria Mononuclear Cells (LPMCs) with whole intact microbial cells isolated from stool to demonstrate that fecal bacterial communities (FBCs) from HIV-positive/negative MSM induced higher frequencies of CCR5+ CD4+ T cells compared to FBCs from HIV-negative MSW and women. To identify potential microbial drivers, we related the frequency of CCR5+ CD4+ T cells to the abundance of individual microbial taxa in rectal biopsy of HIV-positive/negative MSM and controls, and Holdemanella biformis was strongly associated with increased frequency of CCR5+ CD4+ T cells. We used in vitro stimulation of gut LPMCs with the type strain of H. biformis, a second strain of H.biformis and an isolate of the closely related Holdemanella porci , cultured from either a HIV-positive or a HIV-negative MSM stool. H. porci elevated the frequency of both CCR5+ CD4+ T cells and the ratio of TNF-α/IL-10 Genomic comparisons of the 3 Holdemanella isolates revealed unique cell wall and capsular components, which may be responsible for their differences in immunogenicity. These findings describe a novel mechanism potentially linking intestinal dysbiosis in MSM to HIV transmission and mucosal pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Firmicutes/inmunología , Microbioma Gastrointestinal/inmunología , Infecciones por VIH/microbiología , Homosexualidad Masculina , Mucosa Intestinal/inmunología , Receptores CCR5/metabolismo , Citocinas/metabolismo , Disbiosis/inmunología , Disbiosis/microbiología , Heces/microbiología , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Genoma Bacteriano/genética , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Minorías Sexuales y de Género
15.
Viral Immunol ; 34(8): 504-509, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34227891

RESUMEN

Early results suggest that SARS-CoV-2 vaccines are highly effective for the prevention of COVID-19. Unfortunately, until we can safely, rapidly, and affordably vaccinate enough people to achieve collective immunity, we cannot afford to disregard the benefits of naturally acquired immunity in those, whose prior documented infections have already run their course. As long as the vaccine manufacturing, supply, or administration are limited in capacity, vaccination of individuals with naturally acquired immunity at the expense of others without any immune protection is inherently inequitable, and violates the principle of justice in biomedical ethics. Any preventable disease acquired during the period of such unnecessary delay in vaccination should not be overlooked, as it may and will result in some additional morbidity, mortality, related hospitalizations, and expense. Low vaccine production capacity complicated by inefficiencies in vaccine administration suggests, that vaccinating preferentially those without any prior protection will result in fewer natural infections more rapidly.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunación , Humanos , Inmunidad , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
16.
mSystems ; 6(3)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006628

RESUMEN

Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people living with HIV and has been linked with inflammation, antiretroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome composition outside the context of HIV but has not been deeply explored in HIV infection or in high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome composition. Furthermore, the contribution of increased bacterial translocation and associated systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not been explored. We used a multiomic approach to explore relationships between impaired metabolic health, defined using fasting blood markers, gut microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-positive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For HIV-positive MSM on ART, we further explored associations with the plasma metabolome. We found that elevated plasma lipopolysaccharide binding protein (LBP) was the most important predictor of impaired metabolic health and network analysis showed that LBP formed a hub joining correlated microbial and immune predictors of metabolic disease. Taken together, our results suggest the role of inflammatory processes linked with bacterial translocation and interaction with the gut microbiome in metabolic disease among HIV-positive and -negative MSM.IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since chronic infection often results in long-term comorbidities. Metabolic disease is prevalent in PLWH even in well-controlled infection and has been linked with the gut microbiome in previous studies, but little attention has been given to PLWH. Furthermore, integrated analyses that consider gut microbiome, together with diet, systemic immune activation, metabolites, and demographics, have been lacking. In a systems-level analysis of predictors of metabolic disease in PLWH and men who are at high risk of acquiring HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory marker indicative of compromised intestinal barrier function, was associated with worse metabolic health. We also found impaired metabolic health associated with specific dietary components, gut microbes, and host and microbial metabolites. This study lays the framework for mechanistic studies aimed at targeting the microbiome to prevent or treat metabolic endotoxemia in HIV-infected individuals.

17.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649199

RESUMEN

Interleukin-1ß (IL-1ß)-mediated inflammation suppresses antitumor immunity, leading to the generation of a tumor-permissive environment, tumor growth, and progression. Here, we demonstrate that nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in melanoma is linked to IL-1ß production, inflammation, and immunosuppression. Analysis of cancer genome datasets (TCGA and GTEx) revealed greater NLRP3 and IL-1ß expression in cutaneous melanoma samples (n = 469) compared to normal skin (n = 324), with a highly significant correlation between NLRP3 and IL-1ß (P < 0.0001). We show the formation of the NLRP3 inflammasome in biopsies of metastatic melanoma using fluorescent resonance energy transfer analysis for NLRP3 and apoptosis-associated speck-like protein containing a CARD. In vivo, tumor-associated NLRP3/IL-1 signaling induced expansion of myeloid-derived suppressor cells (MDSCs), leading to reduced natural killer and CD8+ T cell activity concomitant with an increased presence of regulatory T (Treg) cells in the primary tumors. Either genetic or pharmacological inhibition of tumor-derived NLRP3 by dapansutrile (OLT1177) was sufficient to reduce MDSCs expansion and to enhance antitumor immunity, resulting in reduced tumor growth. Additionally, we observed that the combination of NLRP3 inhibition and anti-PD-1 treatment significantly increased the antitumor efficacy of the monotherapy by limiting MDSC-mediated T cell suppression and tumor progression. These data show that NLRP3 activation in melanoma cells is a protumor mechanism, which induces MDSCs expansion and immune evasion. We conclude that inhibition of NLRP3 can augment the efficacy of anti-PD-1 therapy.


Asunto(s)
Melanoma Experimental/inmunología , Células Supresoras de Origen Mieloide/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas de Neoplasias/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Humanos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas de Neoplasias/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
18.
J Immunol ; 205(9): 2447-2455, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32929038

RESUMEN

HIV type 1 is associated with pulmonary dysfunction that is exacerbated by cigarette smoke. Alveolar macrophages (AM) are the most prominent immune cell in the alveolar space. These cells play an important role in clearing inhaled pathogens and regulating the inflammatory environment; however, how HIV infection impacts AM phenotype and function is not well understood, in part because of their autofluorescence and the absence of well-defined surface markers. The main aim of this study was to evaluate the impact of HIV infection on human AM and to compare the effect of smoking on their phenotype and function. Time-of-flight mass cytometry and RNA sequencing were used to characterize macrophages from human bronchoalveolar lavage of HIV-infected and -uninfected smokers and nonsmokers. We found that the frequency of CD163+ anti-inflammatory AM was decreased, whereas CD163-CCR7+ proinflammatory AM were increased in HIV infection. HIV-mediated proinflammatory polarization was associated with increased levels of inflammatory cytokines and macrophage activation. Conversely, smoking heightened the inflammatory response evident by change in the expression of CXCR4 and TLR4. Altogether, these findings suggest that HIV infection, along with cigarette smoke, favors a proinflammatory macrophage phenotype associated with enhanced expression of inflammatory molecules. Further, this study highlights time-of-flight mass cytometry as a reliable method for immunophenotyping the highly autofluorescent cells present in the bronchoalveolar lavage of cigarette smokers.


Asunto(s)
Antiinflamatorios/inmunología , Infecciones por VIH/inmunología , Inflamación/inmunología , Macrófagos Alveolares/inmunología , Adulto , Líquido del Lavado Bronquioalveolar/inmunología , Citocinas/inmunología , Femenino , Humanos , Inmunofenotipificación/métodos , Pulmón/inmunología , Masculino , Persona de Mediana Edad , Fumadores , Fumar/inmunología
19.
Blood Adv ; 4(8): 1628-1639, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32311014

RESUMEN

The oncogenic drivers and progression factors in multiple myeloma (MM) are heterogeneous and difficult to target therapeutically. Many different MM drugs have emerged, however, that attack various phenotypic aspects of malignant plasma cells. These drugs are administered in numerous, seemingly interchangeable combinations. Although the availability of many treatment options is useful, no clinical test capable of optimizing and sequencing the treatment regimens for an individual patient is currently available. To overcome this problem, we developed a functional ex vivo approach to measure patients' inherent and acquired drug resistance. This method, which we termed myeloma drug sensitivity testing (My-DST), uses unselected bone marrow mononuclear cells with a panel of drugs in clinical use, followed by flow cytometry to measure myeloma-specific cytotoxicity. We found that using whole bone marrow cultures helped preserve primary MM cell viability. My-DST was used to profile 55 primary samples at diagnosis or at relapse. Sensitivity or resistance to each drug was determined from the change in MM viability relative to untreated control samples. My-DST identified progressive loss of sensitivity to immunomodulatory drugs, proteasome inhibitors, and daratumumab through the disease course, mirroring the clinical development of resistance. Prospectively, patients' ex vivo drug sensitivity to the drugs subsequently received was sensitive and specific for clinical response. In addition, treatment with <2 drugs identified as sensitive by My-DST led to inferior depth and duration of clinical response. In summary, ex vivo drug sensitivity is prognostically impactful and, with further validation, may facilitate more personalized and effective therapeutic regimens.


Asunto(s)
Mieloma Múltiple , Anticuerpos Monoclonales , Humanos , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia , Inhibidores de Proteasoma
20.
Microbiome ; 8(1): 50, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252810

RESUMEN

Following publication of the original article [1], the authors reported an error in Fig. 2. The original Fig. 2 has been incorrectly replaced with the Supplementary Fig. 2. The correct Fig. 2 is presented here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...