Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 229(3): 1701-1714, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32929737

RESUMEN

Although horizontal gene transfer (HGT) is common in angiosperm mitochondrial DNAs (mtDNAs), few cases of functional foreign genes have been identified. The one outstanding candidate for large-scale functional HGT is the holoparasite Lophophytum mirabile, whose mtDNA has lost most native genes but contains intact foreign homologs acquired from legume host plants. To investigate the extent to which this situation results from functional replacement of native by foreign genes, functional mitochondrial gene transfer to the nucleus, and/or loss of mitochondrial biochemical function in the context of extreme parasitism, we examined the Lophophytum mitochondrial and nuclear transcriptomes by deep paired-end RNA sequencing. Most foreign mitochondrial genes in Lophophytum are highly transcribed, accurately spliced, and efficiently RNA edited. By contrast, we found no evidence for functional gene transfer to the nucleus or loss of mitochondrial functions in Lophophytum. Many functional replacements occurred via the physical replacement of native genes by foreign genes. Some of these events probably occurred as the final act of HGT itself. Lophophytum mtDNA has experienced an unprecedented level of functional replacement of native genes by foreign copies. This raises important questions concerning population-genetic and molecular regimes that underlie such a high level of foreign gene takeover.


Asunto(s)
Genes Mitocondriales , Genoma Mitocondrial , ADN Mitocondrial , Evolución Molecular , Transferencia de Gen Horizontal/genética , Filogenia
2.
Am J Bot ; 107(1): 91-115, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31814117

RESUMEN

PREMISE: Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS: We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS: Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS: A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.


Asunto(s)
Briófitas , Evolución Molecular , Consenso , Funciones de Verosimilitud , Filogenia
3.
Proc Natl Acad Sci U S A ; 116(3): 934-943, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30598433

RESUMEN

Plastid genomes (plastomes) vary enormously in size and gene content among the many lineages of nonphotosynthetic plants, but key lineages remain unexplored. We therefore investigated plastome sequence and expression in the holoparasitic and morphologically bizarre Balanophoraceae. The two Balanophora plastomes examined are remarkable, exhibiting features rarely if ever seen before in plastomes or in any other genomes. At 15.5 kb in size and with only 19 genes, they are among the most reduced plastomes known. They have no tRNA genes for protein synthesis, a trait found in only three other plastid lineages, and thus Balanophora plastids must import all tRNAs needed for translation. Balanophora plastomes are exceptionally compact, with numerous overlapping genes, highly reduced spacers, loss of all cis-spliced introns, and shrunken protein genes. With A+T contents of 87.8% and 88.4%, the Balanophora genomes are the most AT-rich genomes known save for a single mitochondrial genome that is merely bloated with AT-rich spacer DNA. Most plastid protein genes in Balanophora consist of ≥90% AT, with several between 95% and 98% AT, resulting in the most biased codon usage in any genome described to date. A potential consequence of its radical compositional evolution is the novel genetic code used by Balanophora plastids, in which TAG has been reassigned from stop to tryptophan. Despite its many exceptional properties, the Balanophora plastome must be functional because all examined genes are transcribed, its only intron is correctly trans-spliced, and its protein genes, although highly divergent, are evolving under various degrees of selective constraint.


Asunto(s)
Balanophoraceae/genética , Evolución Molecular , Código Genético , Genoma de Plastidios , Proteínas de Plantas/genética
4.
Mol Biol Evol ; 35(11): 2773-2785, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30202905

RESUMEN

For 30 years, it has been clear that angiosperm mitochondrial genomes evolve rapidly in sequence arrangement (i.e., synteny), yet absolute rates of rearrangement have not been measured in any plant group, nor is it known how much these rates vary. To investigate these issues, we sequenced and reconstructed the rearrangement history of seven mitochondrial genomes in Monsonia (Geraniaceae). We show that rearrangements (occurring mostly as inversions) not only take place at generally high rates in these genomes but also uncover significant variation in rearrangement rates. For example, the hyperactive mitochondrial genome of Monsonia ciliata has accumulated at least 30 rearrangements over the last million years, whereas the branch leading to M. ciliata and its sister species has sustained rearrangement at a rate that is at least ten times lower. Furthermore, our analysis of published data shows that rates of mitochondrial genome rearrangement in seed plants vary by at least 600-fold. We find that sites of rearrangement are highly preferentially located in very close proximity to repeated sequences in Monsonia. This provides strong support for the hypothesis that rearrangement in angiosperm mitochondrial genomes occurs largely through repeat-mediated recombination. Because there is little variation in the amount of repeat sequence among Monsonia genomes, the variable rates of rearrangement in Monsonia probably reflect variable rates of mitochondrial recombination itself. Finally, we show that mitochondrial synonymous substitutions occur in a clock-like manner in Monsonia; rates of mitochondrial substitutions and rearrangements are therefore highly uncoupled in this group.


Asunto(s)
Genoma Mitocondrial , Geraniaceae/genética , Reordenamiento Génico , Tamaño del Genoma , Intrones , Filogenia , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Mutación Silenciosa
5.
Mol Biol Evol ; 34(9): 2340-2354, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28541477

RESUMEN

Functional gene transfers from the mitochondrion to the nucleus are ongoing in angiosperms and have occurred repeatedly for all 15 ribosomal protein genes, but it is not clear why some of these genes are transferred more often than others nor what the balance is between DNA- and RNA-mediated transfers. Although direct insertion of mitochondrial DNA into the nucleus occurs frequently in angiosperms, case studies of functional mitochondrial gene transfer have implicated an RNA-mediated mechanism that eliminates introns and RNA editing sites, which would otherwise impede proper expression of mitochondrial genes in the nucleus. To elucidate the mechanisms that facilitate functional gene transfers and the evolutionary dynamics of the coexisting nuclear and mitochondrial gene copies that are established during these transfers, we have analyzed rpl5 genes from 90 grasses (Poaceae) and related monocots. Multiple lines of evidence indicate that rpl5 has been functionally transferred to the nucleus at least three separate times in the grass family and that at least seven species have intact and transcribed (but not necessarily functional) copies in both the mitochondrion and nucleus. In two grasses, likely functional nuclear copies of rpl5 have been subject to recent gene conversion events via secondarily transferred mitochondrial copies in what we believe are the first described cases of mitochondrial-to-nuclear gene conversion. We show that rpl5 underwent a retroprocessing event within the mitochondrial genome early in the evolution of the grass family, which we argue predisposed the gene towards successful, DNA-mediated functional transfer by generating a "pre-edited" sequence.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Poaceae/genética , Secuencia de Aminoácidos/genética , Núcleo Celular/genética , Evolución Molecular , Conversión Génica/genética , Genes Mitocondriales/genética , Genes de Plantas , Genoma Mitocondrial , Magnoliopsida/genética , Filogenia , Proteínas de Plantas/genética , Seudogenes/genética , Edición de ARN , Proteínas Ribosómicas/genética , Homología de Secuencia de Aminoácido
6.
BMC Plant Biol ; 17(1): 49, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28222679

RESUMEN

BACKGROUND: Aerobically respiring eukaryotes usually contain four respiratory-chain complexes (complexes I-IV) and an ATP synthase (complex V). In several lineages of aerobic microbial eukaryotes, complex I has been lost, with an alternative, nuclear-encoded NADH dehydrogenase shown in certain cases to bypass complex I and oxidize NADH without proton translocation. The first loss of complex I in any multicellular eukaryote was recently reported in two studies; one sequenced the complete mitogenome of the hemiparasitic aerial mistletoe, Viscum scurruloideum, and the other sequenced the V. album mitogenome. The V. scurruloideum study reported no significant additional loss of mitochondrial genes or genetic function, but the V. album study postulated that mitochondrial genes encoding all ribosomal RNAs and proteins of all respiratory complexes are either absent or pseudogenes, thus raising questions as to whether the mitogenome and oxidative respiration are functional in this plant. RESULTS: To determine whether these opposing conclusions about the two Viscum mitogenomes reflect a greater degree of reductive/degenerative evolution in V. album or instead result from interpretative and analytical differences, we reannotated and reanalyzed the V. album mitogenome and compared it with the V. scurruloideum mitogenome. We find that the two genomes share a complete complement of mitochondrial rRNA genes and a typical complement of genes encoding respiratory complexes II-V. Most Viscum mitochondrial protein genes exhibit very high levels of divergence yet are evolving under purifying, albeit relaxed selection. We discover two cases of horizontal gene transfer in V. album and show that the two Viscum mitogenomes differ by 8.6-fold in size (66 kb in V. scurruloideum; 565 kb in V. album). CONCLUSIONS: Viscum mitogenomes are extraordinary compared to other plant mitogenomes in terms of their wide size range, high rates of synonymous substitutions, degree of relaxed selection, and unprecedented loss of respiratory complex I. However, contrary to the initial conclusions regarding V. album, both Viscum mitogenomes possess conventional sets of rRNA and, excepting complex I, respiratory genes. Both plants should therefore be able to carry out aerobic respiration. Moreover, with respect to size, the V. scurruloideum mitogenome has experienced a greater level of reductive evolution.


Asunto(s)
Complejo I de Transporte de Electrón/genética , Evolución Molecular , Transferencia de Gen Horizontal , Variación Genética , Genoma de Planta , Viscum/genética , ADN de Plantas , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Eliminación de Gen , Genes de Plantas , Genoma Mitocondrial , Anotación de Secuencia Molecular , Proteínas de Plantas/genética , ARN de Planta , ARN Ribosómico , Análisis de Secuencia de ADN , Especificidad de la Especie , Viscum/metabolismo , Viscum album/genética , Viscum album/metabolismo
7.
Mol Biol Evol ; 33(6): 1448-60, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26831941

RESUMEN

Mitochondrial genomes (mitogenomes) of flowering plants are well known for their extreme diversity in size, structure, gene content, and rates of sequence evolution and recombination. In contrast, little is known about mitogenomic diversity and evolution within gymnosperms. Only a single complete genome sequence is available, from the cycad Cycas taitungensis, while limited information is available for the one draft sequence, from Norway spruce (Picea abies). To examine mitogenomic evolution in gymnosperms, we generated complete genome sequences for the ginkgo tree (Ginkgo biloba) and a gnetophyte (Welwitschia mirabilis). There is great disparity in size, sequence conservation, levels of shared DNA, and functional content among gymnosperm mitogenomes. The Cycas and Ginkgo mitogenomes are relatively small, have low substitution rates, and possess numerous genes, introns, and edit sites; we infer that these properties were present in the ancestral seed plant. By contrast, the Welwitschia mitogenome has an expanded size coupled with accelerated substitution rates and extensive loss of these functional features. The Picea genome has expanded further, to more than 4 Mb. With regard to structural evolution, the Cycas and Ginkgo mitogenomes share a remarkable amount of intergenic DNA, which may be related to the limited recombinational activity detected at repeats in Ginkgo Conversely, the Welwitschia mitogenome shares almost no intergenic DNA with any other seed plant. By conducting the first measurements of rates of DNA turnover in seed plant mitogenomes, we discovered that turnover rates vary by orders of magnitude among species.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Ginkgo biloba/genética , Gnetophyta/genética , Mitocondrias/genética , Secuencia de Bases , Mapeo Cromosómico , Evolución Molecular , Genes de Plantas , Genoma de Planta , Filogenia , Edición de ARN
8.
PLoS One ; 10(11): e0137532, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26618775

RESUMEN

Sequencing of the 4-Mb mitochondrial genome of the angiosperm Amborella trichopoda has shown that it contains unprecedented amounts of foreign mitochondrial DNA, including four blocks of sequences that together correspond almost perfectly to one entire moss mitochondrial genome. This implies whole-genome transfer from a single moss donor but conflicts with phylogenetic results from an earlier, PCR-based study that suggested three different moss donors to Amborella. To resolve this conflict, we conducted an expanded set of phylogenetic analyses with respect to both moss lineages and mitochondrial loci. The moss DNA in Amborella was consistently placed in either of two positions, depending on the locus analyzed, as sister to the Ptychomniales or within the Hookeriales. This agrees with two of the three previously suggested donors, whereas the third is no longer supported. These results, combined with synteny analyses and other considerations, lead us to favor a model involving two successive moss-to-Amborella whole-genome transfers, followed by recombination that produced a single intact and chimeric moss mitochondrial genome integrated in the Amborella mitochondrial genome. Eight subsequent recombination events account for the state of fragmentation, rearrangement, duplication, and deletion of this chimeric moss mitochondrial genome as it currently exists in Amborella. Five of these events are associated with short-to-intermediate sized repeats. Two of the five probably occurred by reciprocal homologous recombination, whereas the other three probably occurred in a non-reciprocal manner via microhomology-mediated break-induced replication (MMBIR). These findings reinforce and extend recent evidence for an important role of MMBIR in plant mitochondrial DNA evolution.


Asunto(s)
Genoma Mitocondrial , Genoma de Planta , Magnoliopsida/genética , Quimera , ADN Mitocondrial/genética , ADN de Plantas/genética , Evolución Molecular , Filogenia , Análisis de Secuencia de ADN , Sintenía
9.
Proc Natl Acad Sci U S A ; 112(27): E3515-24, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100885

RESUMEN

Despite the enormous diversity among parasitic angiosperms in form and structure, life-history strategies, and plastid genomes, little is known about the diversity of their mitogenomes. We report the sequence of the wonderfully bizarre mitogenome of the hemiparasitic aerial mistletoe Viscum scurruloideum. This genome is only 66 kb in size, making it the smallest known angiosperm mitogenome by a factor of more than three and the smallest land plant mitogenome. Accompanying this size reduction is exceptional reduction of gene content. Much of this reduction arises from the unexpected loss of respiratory complex I (NADH dehydrogenase), universally present in all 300+ other angiosperms examined, where it is encoded by nine mitochondrial and many nuclear nad genes. Loss of complex I in a multicellular organism is unprecedented. We explore the potential relationship between this loss in Viscum and its parasitic lifestyle. Despite its small size, the Viscum mitogenome is unusually rich in recombinationally active repeats, possessing unparalleled levels of predicted sublimons resulting from recombination across short repeats. Many mitochondrial gene products exhibit extraordinary levels of divergence in Viscum, indicative of highly relaxed if not positive selection. In addition, all Viscum mitochondrial protein genes have experienced a dramatic acceleration in synonymous substitution rates, consistent with the hypothesis of genomic streamlining in response to a high mutation rate but completely opposite to the pattern seen for the high-rate but enormous mitogenomes of Silene. In sum, the Viscum mitogenome possesses a unique constellation of extremely unusual features, a subset of which may be related to its parasitic lifestyle.


Asunto(s)
ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Genoma Mitocondrial/genética , Proteínas de Plantas/genética , Viscum/genética , Secuencia de Bases , ADN Mitocondrial/clasificación , Genes Mitocondriales/genética , Variación Genética , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Filogenia , ARN de Planta/genética , ARN Ribosómico/genética , Homología de Secuencia de Ácido Nucleico
10.
New Phytol ; 206(1): 381-396, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25441621

RESUMEN

The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.


Asunto(s)
Genoma Mitocondrial/genética , Genoma de Planta/genética , Recombinación Homóloga , Magnoliopsida/genética , Solanaceae/genética , Secuencia de Bases , Quimera , ADN Mitocondrial/química , ADN Mitocondrial/genética , Hyoscyamus/genética , Mitocondrias/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Nicotiana/genética
11.
Science ; 342(6165): 1468-73, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24357311

RESUMEN

We report the complete mitochondrial genome sequence of the flowering plant Amborella trichopoda. This enormous, 3.9-megabase genome contains six genome equivalents of foreign mitochondrial DNA, acquired from green algae, mosses, and other angiosperms. Many of these horizontal transfers were large, including acquisition of entire mitochondrial genomes from three green algae and one moss. We propose a fusion-compatibility model to explain these findings, with Amborella capturing whole mitochondria from diverse eukaryotes, followed by mitochondrial fusion (limited mechanistically to green plant mitochondria) and then genome recombination. Amborella's epiphyte load, propensity to produce suckers from wounds, and low rate of mitochondrial DNA loss probably all contribute to the high level of foreign DNA in its mitochondrial genome.


Asunto(s)
ADN Mitocondrial/genética , Transferencia de Gen Horizontal , Genoma de Planta , Dinámicas Mitocondriales , Tracheophyta/genética , Secuencia de Bases , Briófitas/clasificación , Briófitas/genética , Chlorophyta/clasificación , Chlorophyta/genética , Fusión de Membrana , Datos de Secuencia Molecular , Filogenia , Tracheophyta/clasificación
12.
Proc Natl Acad Sci U S A ; 110(40): 16253-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24048028

RESUMEN

Light-harvesting antennae are critical for collecting energy from sunlight and providing it to photosynthetic reaction centers. Their abundance and composition are tightly regulated to maintain efficient photosynthesis in changing light conditions. Many cyanobacteria alter their light-harvesting antennae in response to changes in ambient light-color conditions through the process of chromatic acclimation. The control of green light induction (Cgi) pathway is a light-color-sensing system that controls the expression of photosynthetic genes during chromatic acclimation, and while some evidence suggests that it operates via transcription attenuation, the components of this pathway have not been identified. We provide evidence that translation initiation factor 3 (IF3), an essential component of the prokaryotic translation initiation machinery that binds the 30S subunit and blocks premature association with the 50S subunit, is part of the control of green light induction pathway. Light regulation of gene expression has not been previously described for any translation initiation factor. Surprisingly, deletion of the IF3-encoding gene infCa was not lethal in the filamentous cyanobacterium Fremyella diplosiphon, and its genome was found to contain a second, redundant, highly divergent infC gene which, when deleted, had no effect on photosynthetic gene expression. Either gene could complement an Escherichia coli infC mutant and thus both encode bona fide IF3s. Analysis of prokaryotic and eukaryotic genome databases established that multiple infC genes are present in the genomes of diverse groups of bacteria and land plants, most of which do not undergo chromatic acclimation. This suggests that IF3 may have repeatedly evolved important roles in the regulation of gene expression in both prokaryotes and eukaryotes.


Asunto(s)
Cianobacterias/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Fototransducción/fisiología , Luz , Familia de Multigenes/genética , Fotosíntesis/fisiología , Factor 3 Procariótico de Iniciación/metabolismo , Secuencia de Bases , Biología Computacional , Cartilla de ADN/genética , Escherichia coli , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Fototransducción/genética , Funciones de Verosimilitud , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Factor 3 Procariótico de Iniciación/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
BMC Biol ; 11: 29, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23587068

RESUMEN

BACKGROUND: The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. RESULTS: We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. CONCLUSIONS: Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.


Asunto(s)
Fósiles , Orden Génico/genética , Genoma Mitocondrial/genética , Liriodendron/genética , Tasa de Mutación , Edición de ARN/genética , Emparejamiento Base/genética , ADN de Cloroplastos/genética , Evolución Molecular , Tamaño del Genoma/genética , Familia de Multigenes/genética , Plastidios/genética , ARN de Transferencia/genética
14.
Genome Biol Evol ; 4(3): 294-306, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22247429

RESUMEN

The angiosperm genus Silene exhibits some of the most extreme and rapid divergence ever identified in mitochondrial genome architecture and nucleotide substitution rates. These patterns have been considered mitochondrial specific based on the absence of correlated changes in the small number of available nuclear and plastid gene sequences. To better assess the relationship between mitochondrial and plastid evolution, we sequenced the plastid genomes from four Silene species with fully sequenced mitochondrial genomes. We found that two species with fast-evolving mitochondrial genomes, S. noctiflora and S. conica, also exhibit accelerated rates of sequence and structural evolution in their plastid genomes. The nature of these changes, however, is markedly different from those in the mitochondrial genome. For example, in contrast to the mitochondrial pattern, which appears to be genome wide and mutationally driven, the plastid substitution rate accelerations are restricted to a subset of genes and preferentially affect nonsynonymous sites, indicating that altered selection pressures are acting on specific plastid-encoded functions in these species. Indeed, some plastid genes in S. noctiflora and S. conica show strong evidence of positive selection. In contrast, two species with more slowly evolving mitochondrial genomes, S. latifolia and S. vulgaris, have correspondingly low rates of nucleotide substitution in plastid genes as well as a plastid genome structure that has remained essentially unchanged since the origin of angiosperms. These results raise the possibility that common evolutionary forces could be shaping the extreme but distinct patterns of divergence in both organelle genomes within this genus.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial/genética , Genoma de Planta/genética , Magnoliopsida/genética , Plastidios/genética , Silene/genética , ADN Mitocondrial/genética , Datos de Secuencia Molecular , Filogenia
15.
PLoS Biol ; 10(1): e1001241, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22272183

RESUMEN

Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure.


Asunto(s)
Cromosomas de las Plantas/genética , Evolución Molecular , Flores/fisiología , Genoma Mitocondrial/genética , Genoma de Planta/genética , Tasa de Mutación , Silene/genética , Flores/genética , Genes de Plantas/genética , Tamaño del Genoma/genética , Mutación INDEL/genética , Patrón de Herencia/genética , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Nucleótidos/genética , Filogenia , Proteínas de Plantas/genética , Polimorfismo Genético , ARN de Planta/genética , Recombinación Genética/genética , Especificidad de la Especie
16.
BMC Evol Biol ; 11: 277, 2011 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-21943226

RESUMEN

BACKGROUND: The most frequent case of horizontal transfer in plants involves a group I intron in the mitochondrial gene cox1, which has been acquired via some 80 separate plant-to-plant transfer events among 833 diverse angiosperms examined. This homing intron encodes an endonuclease thought to promote the intron's promiscuous behavior. A promising experimental approach to study endonuclease activity and intron transmission involves somatic cell hybridization, which in plants leads to mitochondrial fusion and genome recombination. However, the cox1 intron has not yet been found in the ideal group for plant somatic genetics - the Solanaceae. We therefore undertook an extensive survey of this family to find members with the intron and to learn more about the evolutionary history of this exceptionally mobile genetic element. RESULTS: Although 409 of the 426 species of Solanaceae examined lack the cox1 intron, it is uniformly present in three phylogenetically disjunct clades. Despite strong overall incongruence of cox1 intron phylogeny with angiosperm phylogeny, two of these clades possess nearly identical intron sequences and are monophyletic in intron phylogeny. These two clades, and possibly the third also, contain a co-conversion tract (CCT) downstream of the intron that is extended relative to all previously recognized CCTs in angiosperm cox1. Re-examination of all published cox1 genes uncovered additional cases of extended co-conversion and identified a rare case of putative intron loss, accompanied by full retention of the CCT. CONCLUSIONS: We infer that the cox1 intron was separately and recently acquired by at least three different lineages of Solanaceae. The striking identity of the intron and CCT from two of these lineages suggests that one of these three intron captures may have occurred by a within-family transfer event. This is consistent with previous evidence that horizontal transfer in plants is biased towards phylogenetically local events. The discovery of extended co-conversion suggests that other cox1 conversions may be longer than realized but obscured by the exceptional conservation of plant mitochondrial sequences. Our findings provide further support for the rampant-transfer model of cox1 intron evolution and recommend the Solanaceae as a model system for the experimental analysis of cox1 intron transfer in plants.


Asunto(s)
Ciclooxigenasa 1/genética , Evolución Molecular , Transferencia de Gen Horizontal/genética , Intrones/genética , Filogenia , Solanaceae/enzimología , Secuencia de Bases , Biología Computacional , Cartilla de ADN/genética , Funciones de Verosimilitud , Modelos Genéticos , Alineación de Secuencia , Solanaceae/genética
17.
Plant Cell ; 23(7): 2499-513, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21742987

RESUMEN

Members of the flowering plant family Cucurbitaceae harbor the largest known mitochondrial genomes. Here, we report the 1685-kb mitochondrial genome of cucumber (Cucumis sativus). We help solve a 30-year mystery about the origins of its large size by showing that it mainly reflects the proliferation of dispersed repeats, expansions of existing introns, and the acquisition of sequences from diverse sources, including the cucumber nuclear and chloroplast genomes, viruses, and bacteria. The cucumber genome has a novel structure for plant mitochondria, mapping as three entirely or largely autonomous circular chromosomes (lengths 1556, 84, and 45 kb) that vary in relative abundance over a twofold range. These properties suggest that the three chromosomes replicate independently of one another. The two smaller chromosomes are devoid of known functional genes but nonetheless contain diagnostic mitochondrial features. Paired-end sequencing conflicts reveal differences in recombination dynamics among chromosomes, for which an explanatory model is developed, as well as a large pool of low-frequency genome conformations, many of which may result from asymmetric recombination across intermediate-sized and sometimes highly divergent repeats. These findings highlight the promise of genome sequencing for elucidating the recombinational dynamics of plant mitochondrial genomes.


Asunto(s)
Cromosomas de las Plantas/genética , Cromosomas de las Plantas/ultraestructura , Cucumis sativus/genética , Genoma Mitocondrial , Genoma de Planta , Recombinación Genética , Secuencia de Bases , Mapeo Cromosómico , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , ADN de Plantas/análisis , ADN de Plantas/genética , Transferencia de Gen Horizontal , Genes de Plantas , Intrones/genética , Datos de Secuencia Molecular , Secuencias Repetitivas de Ácidos Nucleicos
18.
PLoS One ; 6(1): e16404, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21283772

RESUMEN

The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.


Asunto(s)
Fabaceae/genética , Genoma Mitocondrial/genética , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Secuencia de Bases , Genoma de Planta , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
19.
Mob Genet Elements ; 1(4): 256-261, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22545235

RESUMEN

Horizontal gene transfer (HGT) often leads to phylogenetic incongruence. When "duplicative HGT" introduces a second copy of a pre-existing gene, the two copies may then engage in gene conversion, leading to phylogenetically mosiac genes. When duplicative HGT is followed by differential gene conversion among descendant lineages, as under the DH-DC model, phylogenetic analysis is further complicated. To explore the effects of DH-DC on phylogeny reconstruction, we analyzed two sets of sequences: (1) an augmented set of plant mitochondrial atp1 sequences for which we recently published evidence of DH-DC; and (2) a set of simulated sequences for which we varied the extent of chimerism, the number of chimeric genes and nucleotide substitution rates. We show that the phylogenetic behavior of evolutionarily chimeric genes is highly volatile and depends on both the degree of chimerism and the number of differentially chimeric genes present in the analysis. Furthermore, we show that the presence of chimeric genes in gene trees can spuriously affect the phylogenetic position of purely native sequences, especially by attracting these sequences toward basal positions in trees. We propose the term "HGT turbulence" to describe these complex effects of evolutionarily chimeric genes on phylogenetic results.

20.
BMC Biol ; 8: 150, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-21176201

RESUMEN

BACKGROUND: Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. RESULTS: In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. CONCLUSIONS: This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago. See Commentary: http://www.biomedcentral.com/1741-7007/8/147.


Asunto(s)
Conversión Génica/fisiología , Transferencia de Gen Horizontal/fisiología , Genes Mitocondriales/genética , Interacciones Huésped-Parásitos/genética , Plantas/genética , Secuencia de Bases , Cuscuta/genética , Cuscuta/fisiología , Genes de Plantas/fisiología , Variación Genética/fisiología , Datos de Secuencia Molecular , Filogenia , Desarrollo de la Planta , Plantago/genética , Plantago/parasitología , Seudogenes , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...