Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831660

RESUMEN

Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.

2.
Acta Biomater ; 177: 50-61, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331132

RESUMEN

Cell therapies offer great promise in the treatment of diseases and tissue regeneration, but their clinical use has many challenges including survival, optimal performance in their intended function, or localization at sites where they are needed for effective outcomes. We report here on a method to coat a biodegradable matrix of biomimetic nanofibers on single cells that could have specific functions ranging from cell signaling to targeting and helping cells survive when used for therapies. The fibers are composed of peptide amphiphile (PA) molecules that self-assemble into supramolecular nanoscale filaments. The PA nanofibers were able to create a mesh-like coating for a wide range of cell lineages with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The targeting abilities of this system were assessed in vitro using human primary regulatory T (hTreg) cells coated with PAs displaying a vascular cell adhesion protein 1 (VCAM-1) targeting motif. This approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies. STATEMENT OF SIGNIFICANCE: Cell therapies hold great promise in the treatment of diseases and tissue regeneration, but their clinical use has been limited by cell survival, targeting, and function. We report here a method to coat single cells with a biodegradable matrix of biomimetic nanofibers composed of peptide amphiphile (PA) molecules. The nanofibers were able to coat cells, such as human primary regulatory T cells, with nearly 100 % efficiency, without interrupting the natural cellular phenotype or functions. The approach provides a biocompatible method for single-cell coating that does not negatively alter cellular phenotype, binding capacity, or immunosuppressive functionality, with potential utility across a broad spectrum of cell therapies.


Asunto(s)
Nanofibras , Humanos , Nanofibras/química , Biomimética , Matriz Extracelular , Péptidos/farmacología , Péptidos/química
3.
Sci Adv ; 9(31): eadi4566, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531426

RESUMEN

Autonomous robotic functions in materials beyond simple stimulus-response actuation require the development of functional soft matter that can complete well-organized tasks without step-by-step control. We report the design of photo- and electroactivated hydrogels that can capture and deliver cargo, avoid obstacles, and return without external, stepwise control. By incorporating two spiropyran monomers with different chemical substituents in the hydrogel, we created chemically random networks that enabled photoregulated charge reversal and autonomous behaviors under a constant electric field. In addition, using perturbations in the electric field induced by a dielectric inhomogeneity, the hydrogel could be attracted to high dielectric constant materials and autonomously bypasses the low dielectric constant materials under the guidance of the electric field vector. The photo- and electroactive hydrogels investigated here can autonomously perform tasks using constant external stimuli, an encouraging observation for the potential development of molecularly designed intelligent robotic materials.

4.
Chem Sci ; 14(22): 6095-6104, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293659

RESUMEN

Supramolecular-covalent hybrid polymers have been shown to be interesting systems to generate robotic functions in soft materials in response to external stimuli. In recent work supramolecular components were found to enhance the speed of reversible bending deformations and locomotion when exposed to light. The role of morphology in the supramolecular phases integrated into these hybrid materials remains unclear. We report here on supramolecular-covalent hybrid materials that incorporate either high-aspect-ratio peptide amphiphile (PA) ribbons and fibers, or low-aspect-ratio spherical peptide amphiphile micelles into photo-active spiropyran polymeric matrices. We found that the high-aspect-ratio morphologies not only play a significant role in providing mechanical reinforcement to the matrix but also enhance photo-actuation for both light driven volumetric contraction and expansion of spiropyran hydrogels. Molecular dynamics simulations indicate that water within the high-aspect-ratio supramolecular polymers exhibits a faster draining rate as compared to those in spherical micelles, which suggests that the high-aspect-ratio supramolecular polymers effectively facilitate the transport of trapped water molecules by functioning as channels and therefore enhancing actuation of the hybrid system. Our simulations provide a useful strategy for the design of new functional hybrid architectures and materials with the aim of accelerating response and enhancing actuation by facilitating water diffusion at the nanoscopic level.

5.
ACS Appl Mater Interfaces ; 15(22): 26340-26348, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235485

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) on host cells to initiate cellular entry. Blocking the interactions between the spike protein and ACE2 offers promising therapeutic opportunities to prevent infection. We report here on peptide amphiphile supramolecular nanofibers that display a sequence from ACE2 in order to promote interactions with the SARS-CoV-2 spike receptor binding domain. We demonstrate that displaying this sequence on the surface of supramolecular assemblies preserves its α-helical conformation and blocks the entry of a pseudovirus and its two variants into human host cells. We also found that the chemical stability of the bioactive structures was enhanced in the supramolecular environment relative to the unassembled peptide molecules. These findings reveal unique advantages of supramolecular peptide therapies to prevent viral infections and more broadly for other targets as well.


Asunto(s)
COVID-19 , Nanofibras , Humanos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismo
6.
Angew Chem Int Ed Engl ; 62(17): e202214997, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36861407

RESUMEN

Supramolecular polymerization of π-conjugated amphiphiles in water is an attractive approach to create functional nanostructures. Here, we report on the synthesis, optoelectronic and electrochemical properties, aqueous supramolecular polymerization, and conductivity of polycyclic aromatic dicarboximide amphiphiles. The chemical structure of the model perylene monoimide amphiphile was modified with heterocycles, essentially substituting one fused benzene ring with thiophene, pyridine or pyrrole rings. All the heterocycle-containing monomers investigated underwent supramolecular polymerization in water. Large changes to the monomeric molecular dipole moments led to nanostructures with low electrical conductivity due to diminished interactions. Although the substitution of benzene with thiophene did not notably change the monomer dipole moment, it led to crystalline nanoribbons with 20-fold higher electrical conductivity, due to enhanced dispersion interactions as a result of the presence of sulfur atoms.

7.
Nat Chem ; 14(12): 1427-1435, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316409

RESUMEN

Peptide materials have a wide array of functions, from tissue engineering and surface coatings to catalysis and sensing. Tuning the sequence of amino acids that comprise the peptide modulates peptide functionality, but a small increase in sequence length leads to a dramatic increase in the number of peptide candidates. Traditionally, peptide design is guided by human expertise and intuition and typically yields fewer than ten peptides per study, but these approaches are not easily scalable and are susceptible to human bias. Here we introduce a machine learning workflow-AI-expert-that combines Monte Carlo tree search and random forest with molecular dynamics simulations to develop a fully autonomous computational search engine to discover peptide sequences with high potential for self-assembly. We demonstrate the efficacy of the AI-expert to efficiently search large spaces of tripeptides and pentapeptides. The predictability of AI-expert performs on par or better than our human experts and suggests several non-intuitive sequences with high self-assembly propensity, outlining its potential to overcome human bias and accelerate peptide discovery.


Asunto(s)
Simulación de Dinámica Molecular , Péptidos , Humanos , Péptidos/química , Aprendizaje Automático , Hidrogeles/química , Aminoácidos
8.
J Am Chem Soc ; 144(36): 16512-16523, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36049084

RESUMEN

Pathways in supramolecular polymerization traverse different regions of the system's energy landscape, affecting not only their architectures and internal structure but also their functions. We report here on the effects of pathway selection on polymerization for two isomeric peptide amphiphile monomers with amino acid sequences AAEE and AEAE. We subjected the monomers to five different pathways that varied in the order they were exposed to electrostatic screening by electrolytes and thermal annealing. We found that introducing electrostatic screening of E residues before annealing led to crystalline packing of AAEE monomers. Electrostatic screening decreased intermolecular repulsion among AAEE monomers thus promoting internal order within the supramolecular polymers, while subsequent annealing brought them closer to thermodynamic equilibrium with enhanced ß-sheet secondary structure. In contrast, supramolecular polymerization of AEAE monomers was less pathway dependent, which we attribute to side-chain dimerization. Regardless of the pathway, the internal structure of AEAE nanostructures had limited internal order and moderate ß-sheet structure. These supramolecular polymers generated hydrogels with lower porosity and greater bulk mechanical strength than those formed by the more cohesive AAEE polymers. The combination of dynamic, less ordered internal structure and bulk strength of AEAE networks promoted strong cell-material interactions in adherent epithelial-like cells, evidenced by increased cytoskeletal remodeling and cell spreading. The highly ordered AAEE nanostructures formed porous hydrogels with inferior bulk mechanical properties and weaker cell-material interactions. We conclude that pathway sensitivity in supramolecular synthesis, and therefore structure and function, is highly dependent on the nature of dominant interactions driving polymerization.


Asunto(s)
Péptidos , Polímeros , Secuencia de Aminoácidos , Hidrogeles , Péptidos/química , Polimerizacion , Polímeros/química
9.
ACS Nano ; 16(6): 8993-9003, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35588377

RESUMEN

Organic crystals formed by small molecules can be highly functional but are often brittle or insoluble structures with limited possibilities for use or processing from a liquid phase. A possible solution is the nanoscale integration of polymers into organic crystals without sacrificing long-range order and therefore function. This enables the organic crystals to benefit from the advantageous mechanical and chemical properties of the polymeric component. We report here on a strategy in which small molecules cocrystallize with side chains of chemically disordered polymers to create hybrid nanostructures containing a highly ordered lattice. Synchrotron X-ray scattering, absorption spectroscopy, and coarse-grained molecular dynamics simulations reveal that the polymer backbones form an "exo-crystalline" layer of disordered chains that wrap around the nanostructures, becoming a handle for interesting properties. The morphology of this "hybrid bonding polymer" nanostructure is dictated by the competition between the polymers' entropy and the enthalpy of the lattice allowing for control over the aspect ratio of the nanocrystal by changing the degree of polymer integration. We observed that nanostructures with an exo-crystalline layer of polymer exhibit enhanced fracture strength, self-healing capacity, and dispersion in water, which benefits their use as light-harvesting assemblies in photocatalysis. Guided by computation, future work could further explore these hybrid nanostructures as components for functional materials.

10.
Front Chem ; 10: 852164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372273

RESUMEN

Peptide amphiphiles are a class of molecules that can self-assemble into a variety of supramolecular structures, including high-aspect-ratio nanofibers. It is challenging to model and predict the charges in these supramolecular nanofibers because the ionization state of the peptides are not fixed but liable to change due to the acid-base equilibrium that is coupled to the structural organization of the peptide amphiphile molecules. Here, we have developed a theoretical model to describe and predict the amount of charge found on self-assembled peptide amphiphiles as a function of pH and ion concentration. In particular, we computed the amount of charge of peptide amphiphiles nanofibers with the sequence C 16 - V 2 A 2 E 2. In our theoretical formulation, we consider charge regulation of the carboxylic acid groups, which involves the acid-base chemical equilibrium of the glutamic acid residues and the possibility of ion condensation. The charge regulation is coupled with the local dielectric environment by allowing for a varying dielectric constant that also includes a position-dependent electrostatic solvation energy for the charged species. We find that the charges on the glutamic acid residues of the peptide amphiphile nanofiber are much lower than the same functional group in aqueous solution. There is a strong coupling between the charging via the acid-base equilibrium and the local dielectric environment. Our model predicts a much lower degree of deprotonation for a position-dependent relative dielectric constant compared to a constant dielectric background. Furthermore, the shape and size of the electrostatic potential as well as the counterion distribution are quantitatively and qualitatively different. These results indicate that an accurate model of peptide amphiphile self-assembly must take into account charge regulation of acidic groups through acid-base equilibria and ion condensation, as well as coupling to the local dielectric environment.

11.
J Am Chem Soc ; 144(12): 5562-5574, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35296133

RESUMEN

Supramolecular peptide chemistry offers a versatile strategy to create chemical systems useful as new biomaterials with potential to deliver nearly 1000 known candidate peptide therapeutics or integrate other types of bioactivity. We report here on the co-assembly of lipidated ß-sheet-forming peptides with soluble short peptides, yielding supramolecular copolymers with various degrees of internal order. At low peptide concentrations, the co-monomer is protected by lodging within internal aqueous compartments and stabilizing internal ß-sheets formed by the lipidated peptides. At higher concentrations, the peptide copolymerizes with the lipidated peptide and disrupts the ß-sheet secondary structure. The thermodynamic metastability of the co-assembly in turn leads to the spontaneous release of peptide monomers and thus serves as a potential mechanism for drug delivery. We demonstrated the function of these supramolecular systems using a drug candidate for Alzheimer's disease and found that the copolymers enhance neuronal cell viability when the soluble peptide is released from the assemblies.


Asunto(s)
Péptidos , Polímeros , Péptidos/química , Péptidos/farmacología , Conformación Proteica en Lámina beta , Estructura Secundaria de Proteína , Termodinámica
12.
J Phys Chem B ; 126(3): 650-659, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35029997

RESUMEN

Many peptides are able to self-assemble into one-dimensional (1D) nanostructures, such as cylindrical fibers or ribbons of variable widths, but the relationship between the morphology of 1D objects and their molecular structure is not well understood. Here, we use coarse-grained molecular dynamics (CG-MD) simulations to study the nanostructures formed by self-assembly of different peptide amphiphiles (PAs). The results show that ribbons are hierarchical superstructures formed by laterally assembled cylindrical fibers. Simulations starting from bilayer structures demonstrate the formation of filaments, whereas other simulations starting from filaments indicate varying degrees of interaction among them depending on chemical structure. These interactions are verified by observations using atomic force microscopy of the various systems. The interfilament interactions are predicted to be strongest in supramolecular assemblies that display hydrophilic groups on their surfaces, while those with hydrophobic ones are predicted to interact more weakly as confirmed by viscosity measurements. The simulations also suggest that peptide amphiphiles with hydrophobic termini bend to reduce their interfacial energy with water, which may explain why these systems do not collapse into superstructures of bundled filaments. The simulations suggest that future experiments will need to address mechanistic questions about the self-assembly of these systems into hierarchical structures, namely, the preformation of interactive filaments vs equilibration of large assemblies into superstructures.


Asunto(s)
Nanoestructuras , Péptidos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Nanoestructuras/química , Péptidos/química , Agua/química
14.
Nano Lett ; 21(14): 6146-6155, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34259001

RESUMEN

The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing ß-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted ß-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal ß-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.


Asunto(s)
Nanoestructuras , Péptidos , Secuencia de Aminoácidos , Aminoácidos , Agua
15.
Soft Matter ; 17(19): 4949-4956, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34008682

RESUMEN

Hierarchical self-assembly leading to organized supramolecular structures across multiple length scales has been of great recent interest. Earlier work from our laboratory reported the complexation of peptide amphiphile (PA) supramolecular polymers with oppositely charged polyelectrolytes into a single solid membrane at a macroscopic interface. We report here the formation of bulk gels with many internal interfaces between the covalent and supramolecular polymer components formed by the rapid chaotic mixing of solutions, one containing negatively charged PA nanofibers and the other the positively charged biopolymer chitosan. We found that formation of a contact layer at the interface of the solutions locks the formation of hydrogels with lamellar microstructure. The nanofiber morphology of the supramolecular polymer is essential to this process since gels do not form when solutions of supramolecular assemblies form spherical micelles. We found that rheological properties of the gels can be tuned by changing the relative amounts of each component. Furthermore, both positively and negatively charged proteins are easily encapsulated within the contact layer of the gel, which provides an interesting biomedical function for these systems.


Asunto(s)
Nanofibras , Hidrogeles , Péptidos , Polielectrolitos , Reología
16.
Nano Lett ; 21(9): 3745-3752, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33877843

RESUMEN

The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 µm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.


Asunto(s)
Perileno , Hidrógeno , Polimerizacion , Polímeros , Electricidad Estática
17.
Soft Matter ; 17(14): 3902-3912, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33705512

RESUMEN

Supramolecular self-assembly enables living organisms to form highly functional hierarchical structures with individual components self-organized across multiple length scales. This has inspired work on multicomponent supramolecular materials to understand factors behind co-assembly versus self-sorting of molecules. We report here on a supramolecular system comprised of negatively charged peptide amphiphile (PA) molecules, in which only a tiny fraction of the molecules (0.7 mol%) were covalently conjugated to one of two different fluorophores, half to fluorescein isothiocyanate (FTIC) and the other half to tetramethylrhodamine (TAMRA). Confocal microscopy of the system revealed self-sorting of the two different fluorescent PA molecules, where TAMRA PA is concentrated in micron-scale domains while FITC PA remains dispersed throughout the sample. From Förster resonance energy transfer and fluorescence recovery experiments, we conclude that conjugation of the negatively charged FITC to PA significantly disrupts its co-assembly with the 99.3 mol% of unlabeled molecules, which are responsible for formation of micron-scale domains. Conversely, conjugation of the zwitterionic TAMRA causes no such disruption. Interestingly, this dissimilar behavior between FITC and TAMRA PA causes them to self-sort at large length scales in the supramolecular system, mediated not by specific interactions among the individual fluorophores but instead by their different propensities to co-assemble with the majority component. We also found that greater ionic strength in the aqueous environment of the system promotes mixing by lowering the electrostatic barriers involved in self-sorting. Our results demonstrate great thermodynamic subtlety in the driving forces that mediate self-sorting versus co-assembly in supramolecular peptide assemblies.


Asunto(s)
Péptidos , Agua , Concentración Osmolar , Electricidad Estática , Termodinámica
18.
Sci Robot ; 5(49)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298516

RESUMEN

The design of soft matter in which internal fuels or an external energy input can generate locomotion and shape transformations observed in living organisms is a key challenge. Such materials could assist in productive functions that may range from robotics to smart management of chemical reactions and communication with cells. In this context, hydrated matter that can function in aqueous media would be of great interest. Here, we report the design of hydrogels containing a scaffold of high-aspect ratio ferromagnetic nanowires with nematic order dispersed in a polymer network that change shape in response to light and experience torques in rotating magnetic fields. The synergistic response enables fast walking motion of macroscopic objects in water on either flat or inclined surfaces and also guides delivery of cargo through rolling motion and light-driven shape changes. The theoretical description of the response to the external energy input allowed us to program specific trajectories of hydrogel objects that were verified experimentally.


Asunto(s)
Robótica/instrumentación , Materiales Biomiméticos , Biomimética , Suministros de Energía Eléctrica , Hidrogeles , Luz , Campos Magnéticos , Nanopartículas de Magnetita/química , Metales , Movimiento (Física) , Nanocables/química , Procesos Fotoquímicos , Polímeros , Robótica/métodos
19.
Nat Mater ; 19(8): 900-909, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572204

RESUMEN

The development of synthetic structures that mimic mechanical actuation in living matter such as autonomous translation and shape changes remains a grand challenge for materials science. In living systems the integration of supramolecular structures and covalent polymers contributes to the responsive behaviour of membranes, muscles and tendons, among others. Here we describe hybrid light-responsive soft materials composed of peptide amphiphile supramolecular polymers chemically bonded to spiropyran-based networks that expel water in response to visible light. The supramolecular polymers form a reversibly deformable and water-draining skeleton that mechanically reinforces the hybrid and can also be aligned by printing methods. The noncovalent skeleton embedded in the network thus enables faster bending and flattening actuation of objects, as well as longer steps during the light-driven crawling motion of macroscopic films. Our work suggests that hybrid bonding polymers, which integrate supramolecular assemblies and covalent networks, offer strategies for the bottom-up design of soft matter that mimics living organisms.


Asunto(s)
Biomimética , Luz , Fenómenos Mecánicos , Polímeros/química , Hidrogeles/química , Isomerismo , Procesos Fotoquímicos
20.
J Am Chem Soc ; 142(28): 12216-12225, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32598851

RESUMEN

Hierarchical assemblies of proteins into fibrillar structures occur in both physiologic and pathologic extracellular spaces and often involve interactions between oppositely charged peptide domains. However, the interplay between tertiary structure dynamics and quaternary hierarchical structure formation remains unclear. In this work, we investigate supramolecular mimics of these systems by mixing one-dimensional assemblies of small alkylated peptides bearing opposite charge and varying in peptide sequence. We found that assemblies with weak cohesive interactions readily create fibrous superstructures of bundled filaments as molecules redistribute upon mixing. Low cohesion allows molecules to escape from the original assemblies and exchange dynamics help them reassemble into electrostatically stable bundles. However, we also found that kinetic barriers can be encountered in these systems and limit formation of the hierarchical structures at pH values where charge densities are high. Increasing intermolecular cohesion using longer peptide sequences that form stable ß-sheets was found to suppress superstructure formation. Our findings suggest that low internal cohesion in protein systems could facilitate the conformational rearrangements required to create hierarchical structures.


Asunto(s)
Péptidos/química , Proteínas/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Tamaño de la Partícula , Péptidos/síntesis química , Conformación Proteica , Proteínas/síntesis química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...