Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 114(1): 177-192, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37486162

RESUMEN

Sweet sorghum (Sorghum bicolor) lines M81-E and Colman were previously shown to differ in responses to Fusarium thapsinum and Macrophomina phaseolina, stalk rot pathogens that can reduce the yields and quality of biomass and extracted sugars. Inoculated tissues were compared for transcriptomic, phenolic metabolite, and enzymatic activity during disease development 3 and 13 days after inoculation (DAI). At 13 DAI, M81-E had shorter mean lesion lengths than Colman when inoculated with either pathogen. Transcripts encoding monolignol biosynthetic and modification enzymes were associated with transcriptional wound (control) responses of both lines at 3 DAI. Monolignol biosynthetic genes were differentially coexpressed with transcriptional activator SbMyb76 in all Colman inoculations, but only following M. phaseolina inoculation in M81-E, suggesting that SbMyb76 is associated with lignin biosynthesis during pathogen responses. In control inoculations, defense-related genes were expressed at higher levels in M81-E than Colman. Line, treatment, and timepoint differences observed in phenolic metabolite and enzyme activities did not account for observed differences in lesions. However, generalized additive models were able to relate metabolites, but not enzyme activities, to lesion length for quantitatively modeling disease progression: in M81-E, but not Colman, sinapic acid levels positively predicted lesion length at 3 DAI when cell wall-bound syringic acid was low, soluble caffeic acid was high, and lactic acid was high, suggesting that sinapic acid may contribute to responses at 3 DAI. These results provide potential gene targets for development of sweet sorghum varieties with increased stalk rot resistance to ensure biomass and sugar quality.


Asunto(s)
Sorghum , Sorghum/genética , Enfermedades de las Plantas/genética , Ácidos Cumáricos/metabolismo , Metabolismo Secundario , Grano Comestible
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834079

RESUMEN

Switchgrass (Panicum virgatum L.) can be infected by the rust pathogen (Puccinia novopanici) and results in lowering biomass yields and quality. Label-free quantitative proteomics was conducted on leaf extracts harvested from non-infected and infected plants from a susceptible cultivar (Summer) at 7, 11, and 18 days after inoculation (DAI) to follow the progression of disease and evaluate any plant compensatory mechanisms to infection. Some pustules were evident at 7 DAI, and their numbers increased with time. However, fungal DNA loads did not appreciably change over the course of this experiment in the infected plants. In total, 3830 proteins were identified at 1% false discovery rate, with 3632 mapped to the switchgrass proteome and 198 proteins mapped to different Puccinia proteomes. Across all comparisons, 1825 differentially accumulated switchgrass proteins were identified and subjected to a STRING analysis using Arabidopsis (A. thaliana L.) orthologs to deduce switchgrass cellular pathways impacted by rust infection. Proteins associated with plastid functions and primary metabolism were diminished in infected Summer plants at all harvest dates, whereas proteins associated with immunity, chaperone functions, and phenylpropanoid biosynthesis were significantly enriched. At 18 DAI, 1105 and 151 proteins were significantly enriched or diminished, respectively. Many of the enriched proteins were associated with mitigation of cellular stress and defense.


Asunto(s)
Basidiomycota , Panicum , Puccinia , Proteoma/metabolismo , Panicum/genética , Basidiomycota/genética
3.
Plants (Basel) ; 12(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37111955

RESUMEN

High-biomass-yielding southerly adapted switchgrasses (Panicum virgatum L.) frequently suffer from unpredictable winter hardiness at more northerly sites arising from damage to rhizomes that prevent effective spring regrowth. Previously, changes occurring over the growing season in rhizomes sampled from a cold-adapted tetraploid upland cultivar, Summer, demonstrated a role for abscisic acid (ABA), starch accumulation, and transcriptional reprogramming as drivers of dormancy onset and potential keys to rhizome health during winter dormancy. Here, rhizome metabolism of a high-yielding southerly adapted tetraploid switchgrass cultivar, Kanlow-which is a significant source of genetics for yield improvement-was studied over a growing season at a northern site. Metabolite levels and transcript abundances were combined to develop physiological profiles accompanying greening through the onset of dormancy in Kanlow rhizomes. Next, comparisons of the data to rhizome metabolism occurring in the adapted upland cultivar Summer were performed. These data revealed both similarities as well as numerous differences in rhizome metabolism that were indicative of physiological adaptations unique to each cultivar. Similarities included elevated ABA levels and accumulation of starch in rhizomes during dormancy onset. Notable differences were observed in the accumulation of specific metabolites, the expression of genes encoding transcription factors, and several enzymes linked to primary metabolism.

4.
Arch Virol ; 167(5): 1247-1256, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35344095

RESUMEN

Panicum mosaic virus (PMV), the type member of the genus Panicovirus in the family Tombusviridae, naturally infects switchgrass (Panicum virgatum L.). PMV and its molecular partner, satellite panicum mosaic virus (SPMV), interact synergistically in coinfected millets to exacerbate the disease phenotype and increase the accumulation of PMV compared to plants infected with PMV alone. In this study, we examined the reaction of switchgrass cvs. Summer and Kanlow to PMV and PMV+SPMV infections at 24°C and 32°C. Switchgrass cv. Summer was susceptible to PMV at both temperatures. In contrast, cv. Kanlow was tolerant to PMV at 24°C, but not at 32°C, suggesting that Kanlow harbors temperature-sensitive resistance to PMV. At 24°C, PMV was readily detected in inoculated leaves, but not in upper uninoculated leaves of Kanlow, suggesting that resistance to PMV was likely mediated by abrogation of long-distance virus transport. Coinfection by PMV and SPMV at 24°C and 32°C in cv. Summer, but not in Kanlow, caused increased symptomatic systemic infection and mild disease synergism with slightly increased PMV accumulation compared to plants infected with PMV alone. These data suggest that the interaction between PMV and SPMV in switchgrass is cultivar-dependent, manifested in Summer but not in Kanlow. However, co-inoculation of cv. Kanlow with PMV+SPMV caused an enhanced asymptomatic infection, suggesting a role of SPMV in enhancement of symptomless infection in a tolerant cultivar. These data suggest that enhanced asymptomatic infections in a virus-tolerant switchgrass cultivar could serve as a source of virus spread and play an important role in panicum mosaic disease epidemiology under field conditions. Our data reveal that the cultivar, coinfection with SPMV, and temperature influence the severity of symptoms elicited by PMV in switchgrass.


Asunto(s)
Coinfección , Panicum , Tombusviridae , Virus Satélites/genética , Temperatura , Tombusviridae/genética
5.
BMC Plant Biol ; 21(1): 391, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418969

RESUMEN

BACKGROUND: As effects of global climate change intensify, the interaction of biotic and abiotic stresses increasingly threatens current agricultural practices. The secondary cell wall is a vanguard of resistance to these stresses. Fusarium thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot) cause internal damage to the stalks of the drought tolerant C4 grass, sorghum (Sorghum bicolor (L.) Moench), resulting in reduced transpiration, reduced photosynthesis, and increased lodging, severely reducing yields. Drought can magnify these losses. Two null alleles in monolignol biosynthesis of sorghum (brown midrib 6-ref, bmr6-ref; cinnamyl alcohol dehydrogenase, CAD; and bmr12-ref; caffeic acid O-methyltransferase, COMT) were used to investigate the interaction of water limitation with F. thapsinum or M. phaseolina infection. RESULTS: The bmr12 plants inoculated with either of these pathogens had increased levels of salicylic acid (SA) and jasmonic acid (JA) across both watering conditions and significantly reduced lesion sizes under water limitation compared to adequate watering, which suggested that drought may prime induction of pathogen resistance. RNA-Seq analysis revealed coexpressed genes associated with pathogen infection. The defense response included phytohormone signal transduction pathways, primary and secondary cell wall biosynthetic genes, and genes encoding components of the spliceosome and proteasome. CONCLUSION: Alterations in the composition of the secondary cell wall affect immunity by influencing phenolic composition and phytohormone signaling, leading to the action of defense pathways. Some of these pathways appear to be activated or enhanced by drought. Secondary metabolite biosynthesis and modification in SA and JA signal transduction may be involved in priming a stronger defense response in water-limited bmr12 plants.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Lignina/biosíntesis , Lignina/genética , Sorghum/química , Sorghum/genética , Sorghum/microbiología , Ascomicetos/patogenicidad , Pared Celular/química , Pared Celular/genética , Grano Comestible/química , Grano Comestible/genética , Grano Comestible/microbiología , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Interacciones Huésped-Patógeno/genética , Mutación , Transducción de Señal , Estados Unidos , Agua/metabolismo
6.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120946

RESUMEN

Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.


Asunto(s)
Áfidos/patogenicidad , Redes Reguladoras de Genes , Panicum/parasitología , Inmunidad de la Planta , Animales , Biomasa , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metabolómica , Panicum/clasificación , Panicum/genética , Proteínas de Plantas/genética , Análisis de Secuencia de ARN
7.
Sci Rep ; 10(1): 14842, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32908168

RESUMEN

Switchgrass (Panicum virgatum L.) is an important crop for biofuel production but it also serves as host for greenbugs (Schizaphis graminum Rondani; GB). Although transcriptomic studies have been done to infer the molecular mechanisms of plant defense against GB, little is known about the effect of GB infestation on the switchgrass protein expression and phosphorylation regulation. The global response of the switchgrass cultivar Summer proteome and phosphoproteome was monitored by label-free proteomics shotgun in GB-infested and uninfested control plants at 10 days post infestation. Peptides matching a total of 3,594 proteins were identified and 429 were differentially expressed proteins in GB-infested plants relative to uninfested control plants. Among these, 291 and 138 were up and downregulated by GB infestation, respectively. Phosphoproteome analysis identified 310 differentially phosphorylated proteins (DP) from 350 phosphopeptides with a total of 399 phosphorylated sites. These phosphopeptides had more serine phosphorylated residues (79%), compared to threonine phosphorylated sites (21%). Overall, KEGG pathway analysis revealed that GB feeding led to the enriched accumulation of proteins important for biosynthesis of plant defense secondary metabolites and repressed the accumulation of proteins involved in photosynthesis. Interestingly, defense modulators such as terpene synthase, papain-like cysteine protease, serine carboxypeptidase, and lipoxygenase2 were upregulated at the proteome level, corroborating previously published transcriptomic data.


Asunto(s)
Áfidos , Herbivoria , Panicum/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Animales , Regulación de la Expresión Génica de las Plantas , Fosforilación , Fotosíntesis , Transcriptoma
8.
Front Plant Sci ; 11: 1145, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849703

RESUMEN

Aphid herbivory elicits plant defense-related networks that are influenced by host genetics. Plants of the upland switchgrass (Panicum virgatum) cultivar Summer can be a suitable host for greenbug aphids (Schizaphis graminum; GB), and yellow sugarcane aphids (Sipha flava, YSA), whereas the lowland cultivar Kanlow exhibited multi-species resistance that curtails aphid reproduction. However, stabilized hybrids of Summer (♀) x Kanlow (♂) (SxK) with improved agronomics can be damaged by both aphids. Here, hormone and metabolite analyses, coupled with RNA-Seq analysis of plant transcriptomes, were utilized to delineate defense networks induced by aphid feeding in SxK switchgrass and pinpoint plant transcription factors (TFs), such as WRKYs that potentially regulate these responses. Abscisic acid (ABA) levels were significantly higher in GB infested plants at 5 and 10 days after infestation (DAI). ABA levels were highest at 15DAI in YSA infested plants. Jasmonic acid levels were significantly elevated under GB infestation, while salicylic acid levels were signifi40cantly elevated only at 15 DAI in YSA infested plants. Similarly, levels of several metabolites were altered in common or specifically to each aphid. YSA infestation induced a significant enrichment of flavonoids consistent with an upregulation of many genes associated with flavonoid biosynthesis at 15DAI. Gene co-expression modules that responded singly to either aphid or in common to both aphids were differentiated and linked to specific TFs. Together, these data provide important clues into the interplay of metabolism and transcriptional remodeling accompanying defense responses to aphid herbivory in hybrid switchgrass.

9.
Plant Mol Biol ; 103(3): 269-285, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32170550

RESUMEN

Ferulate 5-hydroxylase (F5H) of the monolignol pathway catalyzes the hydroxylation of coniferyl alcohol, coniferaldehyde and ferulic acid to produce 5-hydroxyconiferyl moieties, which lead to the formation of sinapic acid and syringyl (S) lignin monomers. In contrast, guaiacyl (G) lignin, the other major type of lignin monomer, is derived from polymerization of coniferyl alcohol. In this study, the effects of manipulating S-lignin biosynthesis in sorghum (Sorghum bicolor) were evaluated. Overexpression of sorghum F5H (SbF5H), under the control of the CaMV 35S promoter, increased both S-lignin levels and the ratio of S/G lignin, while plant growth and development remained relatively unaffected. Maüle staining of stalk and leaf midrib sections from SbF5H overexpression lines indicated that the lignin composition was altered. Ectopic expression of SbF5H did not affect the gene expression of other monolignol pathway genes. In addition, brown midrib 12-ref (bmr12-ref), a nonsense mutation in the sorghum caffeic acid O-methyltransferase (COMT) was combined with 35S::SbF5H through cross-pollination to examine effects on lignin synthesis. The stover composition from bmr12 35S::SbF5H plants more closely resembled bmr12 stover than 35S::SbF5H or wild-type (WT) stover; S-lignin and total lignin concentrations were decreased relative to WT or 35S::SbF5H. Likewise, expression of upstream monolignol biosynthetic genes was increased in both bmr12 and bmr12 35S::SbF5H relative to WT or 35S::SbF5H. Overall, these results indicated that overexpression of SbF5H did not compensate for the loss of COMT activity. KEY MESSAGE: Overexpression of F5H in sorghum increases S-lignin without increasing total lignin content or affecting plant growth, but it cannot compensate for the loss of COMT activity in monolignol synthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/metabolismo , Sorghum/enzimología , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Sorghum/genética , Sorghum/metabolismo
10.
PLoS One ; 14(9): e0222080, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31513611

RESUMEN

The genetics and responses to biotic stressors of tetraploid switchgrass (Panicum virgatum L.) lowland cultivar 'Kanlow' and upland cultivar Summer are distinct and can be exploited for trait improvement. In general, there is a paucity of data on the basal differences in transcription across tissue developmental times for switchgrass cultivars. Here, the changes in basal and temporal expression of genes related to leaf functions were evaluated for greenhouse grown 'Kanlow', and 'Summer' plants. Three biological replicates of the 4th leaf pooled from 15 plants per replicate were harvested at regular intervals beginning from leaf emergence through senescence. Increases and decreases in leaf chlorophyll and N content were similar for both cultivars. Likewise, multidimensional scaling (MDS) analysis indicated both cultivar-independent and cultivar-specific gene expression. Cultivar-independent genes and gene-networks included those associated with leaf function, such as growth/senescence, carbon/nitrogen assimilation, photosynthesis, chlorophyll biosynthesis, and chlorophyll degradation. However, many genes encoding nucleotide-binding leucine rich repeat (NB-LRRs) proteins and wall-bound kinases associated with detecting and responding to environmental signals were differentially expressed. Several of these belonged to unique cultivar-specific gene co-expression networks. Analysis of genomic resequencing data provided several examples of NB-LRRs genes that were not expressed and/or apparently absent in the genomes of Summer plants. It is plausible that cultivar (ecotype)-specific genes and gene-networks could be one of the drivers for the documented differences in responses to leaf-borne pathogens between these two cultivars. Incorporating broad resistance to plant pathogens in elite switchgrass germplasm could improve sustainability of biomass production under low-input conditions.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Panicum/crecimiento & desarrollo , Proteínas de Plantas/genética , Clorofila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Panicum/clasificación , Panicum/genética , Panicum/metabolismo , Hojas de la Planta/clasificación , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Análisis de Secuencia de ADN , Tetraploidía
11.
PLoS One ; 14(6): e0218352, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194847

RESUMEN

Switchgrass (Panicum virgatum L.) is a low input, high biomass perennial grass being developed for the bioenergy sector. Upland and lowland cultivars can differ in their responses to insect herbivory. Fall armyworm [FAW; Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae)] is a generalist pest of many plant species and can feed on switchgrass as well. Here, in two different trials, FAW larval mass were significantly reduced when fed on lowland cultivar Kanlow relative to larvae fed on upland cultivar Summer plants after 10 days. Hormone content of plants indicated elevated levels of the plant defense hormone jasmonic acid (JA) and its bioactive conjugate JA-Ile although significant differences were not observed. Conversely, the precursor to JA, 12-oxo-phytodienoic acid (OPDA) levels were significantly different between FAW fed Summer and Kanlow plants raising the possibility of differential signaling by OPDA in the two cultivars. Global transcriptome analysis revealed a stronger response in Kanlow plant relative to Summer plants. Among these changes were a preferential upregulation of several branches of terpenoid and phenylpropanoid biosynthesis in Kanlow plants suggesting that enhanced biosynthesis or accumulation of antifeedants could have negatively impacted FAW larval mass gain on Kanlow plants relative to Summer plants. A comparison of the switchgrass-FAW RNA-Seq dataset to those from maize-FAW and switchgrass-aphid interactions revealed that key components of plant responses to herbivory, including induction of JA biosynthesis, key transcription factors and JA-inducible genes were apparently conserved in switchgrass and maize. In addition, these data affirm earlier studies with FAW and aphids that the cultivar Kanlow can provide useful genetics for the breeding of switchgrass germplasm with improved insect resistance.


Asunto(s)
Conducta Alimentaria , Panicum/genética , Spodoptera , Animales , Biomasa , Regulación de la Expresión Génica de las Plantas , Herbivoria , Larva , Panicum/química , Panicum/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/genética , Transcriptoma
12.
J Gen Virol ; 100(5): 889-910, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31017568

RESUMEN

Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus-vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus-vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission.


Asunto(s)
Ácaros/genética , Ácaros/virología , Potyviridae/genética , Transcriptoma/genética , Triticum/parasitología , Triticum/virología , Animales , Vectores de Enfermedades , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/virología
13.
J Econ Entomol ; 112(4): 1887-1901, 2019 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30915439

RESUMEN

Schizaphis graminum Rondani (Hemiptera: Aphididae) and Sipha flava Forbes (Hemiptera: Aphididae) are two common pests of bioenergy grasses. Despite the fact that they are both considered generalists, they differ in their ability to colonize Panicum virgatum cultivars. For example, S. flava colonizes both P. virgatum cv. Summer and P. virgatum cv. Kanlow whereas S. graminum can only colonize Summer. To study the molecular responses of these aphids to these two switchgrass cultivars, we generated de novo transcriptome assemblies and compared the expression profiles of aphids feeding on both cultivars to profiles associated with feeding on a highly susceptible sorghum host and a starvation treatment. Transcriptome assemblies yielded 8,428 and 8,866 high-quality unigenes for S. graminum and S. flava, respectively. Overall, S. graminum responded strongly to all three treatments after 12 h with an upregulation of unigenes coding for detoxification enzymes while major transcriptional changes were not observed in S. flava until 24 h. Additionally, while the two aphids responded to the switchgrass feeding treatment by downregulating unigenes linked to growth and development, their responses to Summer and Kanlow diverged significantly. Schizaphis graminum upregulated more unigenes coding for stress-responsive enzymes in the Summer treatment compared to S. flava; however, many of these unigenes were actually downregulated in the Kanlow treatment. In contrast, S. flava appeared capable of overcoming host defenses by upregulating a larger number of unigenes coding for detoxification enzymes in the Kanlow treatment. Overall, these findings are consistent with previous studies on the interactions of these two cereal aphids to divergent switchgrass hosts.


Asunto(s)
Áfidos , Panicum , Sorghum , Animales , Grano Comestible , Transcriptoma
14.
Front Plant Sci ; 10: 145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853964

RESUMEN

The sugarcane aphid (Melanaphis sacchari) has emerged as a significant pest for sorghum. The use of sugarcane aphid-resistant sorghum germplasm with integrated pest management strategies appears to be an excellent solution to this problem. In this study, a resistant line (RTx2783) and a susceptible line (A/BCK60) were used to characterize the differences in plant responses to the sugarcane aphid through a series of experiments, which examined global sorghum gene expression, aphid feeding behavior and inheritance of aphid resistance. The global transcriptomic responses to sugarcane aphids in resistant and susceptible plants were identified using RNA-seq and compared to the expression profiles of uninfested plants at 5, 10, and 15 days post-infestation. The expression of genes from several functional categories were altered in aphid-infested susceptible plants, which included genes related to cell wall modification, photosynthesis and phytohormone biosynthesis. In the resistant line, only 31 genes were differentially expressed in the infested plants relative to uninfested plants over the same timecourse. However, network analysis of these transcriptomes identified a co-expression module where the expression of multiple sugar and starch associated genes were repressed in infested resistant plants at 5 and 10 days. Several nucleotide-binding-site, leucine-rich repeat (NBS-LRR) and disease resistance genes similar to aphid resistance genes identified in other plants are identified in the current study which may be involved in sugarcane aphid resistance. The electrical penetration graph (EPG) results indicated that sugarcane aphid spent approximately twice as long in non-probing phase, and approximately a quarter of time in phloem ingestion phase on the resistant and F1 plants compared to susceptible plant. Additionally, network analysis identified a phloem protein 2 gene expressed in both susceptible and resistant plants early (day 5) of infestation, which may contribute to defense against aphid feeding within sieve elements. The resistant line RTx2783 displayed both antixenosis and antibiosis modes of resistance based on EPG and choice bioassays between susceptible, resistant and F1 plants. Aphid resistance from RTx2783 segregated as a single dominant locus in the F2 generation, which will enable breeders to rapidly develop sugarcane aphid-resistant hybrids using RTx2783 as the male parent.

15.
PLoS One ; 13(10): e0204153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30289910

RESUMEN

Sorghum (Sorghum bicolor) is a drought tolerant crop, which is being developed as a bioenergy feedstock. The monolignol biosynthesis pathway is a major focus for altering the abundance and composition of lignin. Caffeoyl coenzyme-A O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase that methylates caffeoyl-CoA to generate feruloyl-CoA, an intermediate required for the biosynthesis of both G- and S-lignin. SbCCoAOMT was overexpressed to assess the impact of increasing the amount of this enzyme on biomass composition. SbCCoAOMT overexpression increased both soluble and cell wall-bound (esterified) ferulic and sinapic acids, however lignin concentration and its composition (S/G ratio) remained unaffected. This increased deposition of hydroxycinnamic acids in these lines led to an increase in total energy content of the stover. In stalk and leaf midribs, the increased histochemical staining and autofluorescence in the cell walls of the SbCCoAOMT overexpression lines also indicate increased phenolic deposition within cell walls, which is consistent with the chemical analyses of soluble and wall-bound hydroxycinnamic acids. The growth and development of overexpression lines were similar to wild-type plants. Likewise, RNA-seq and metabolite profiling showed that global gene expression and metabolite levels in overexpression lines were also relatively similar to wild-type plants. Our results demonstrate that SbCCoAOMT overexpression significantly altered cell wall composition through increases in cell wall associated hydroxycinnamic acids without altering lignin concentration or affecting plant growth and development.


Asunto(s)
Pared Celular/metabolismo , Ácidos Cumáricos/metabolismo , Metiltransferasas/genética , Sorghum/crecimiento & desarrollo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Metiltransferasas/metabolismo , Imagen Óptica , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Análisis de Secuencia de ARN , Sorghum/enzimología , Sorghum/genética
16.
BMC Plant Biol ; 18(1): 142, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986667

RESUMEN

BACKGROUND: Switchgrass breeders need to improve the rates of genetic gain in many bioenergy-related traits in order to create improved cultivars that are higher yielding and have optimal biomass composition. One way to achieve this is through genomic selection. However, the heritability of traits needs to be determined as well as the accuracy of prediction in order to determine if efficient selection is possible. RESULTS: Using five distinct switchgrass populations comprised of three lowland, one upland and one hybrid accession, the accuracy of genomic predictions under different cross-validation strategies and prediction methods was investigated. Individual genotypes were collected using GBS while kin-BLUP, partial least squares, sparse partial least squares, and BayesB methods were employed to predict yield, morphological, and NIRS-based compositional data collected in 2012-2013 from a replicated Nebraska field trial. Population structure was assessed by F statistics which ranged from 0.3952 between lowland and upland accessions to 0.0131 among the lowland accessions. Prediction accuracy ranged from 0.57-0.52 for cell wall soluble glucose and fructose respectively, to insignificant for traits with low repeatability. Ratios of heritability across to within-population ranged from 15 to 0.6. CONCLUSIONS: Accuracy was significantly affected by both cross-validation strategy and trait. Accounting for population structure with a cross-validation strategy constrained by accession resulted in accuracies that were 69% lower than apparent accuracies using unconstrained cross-validation. Less accurate genomic selection is anticipated when most of the phenotypic variation exists between populations such as with spring regreening and yield phenotypes.


Asunto(s)
Metabolismo Energético/genética , Panicum/genética , Carácter Cuantitativo Heredable , Estudios de Asociación Genética , Genética de Población , Genoma de Planta/genética , Genotipo , Panicum/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Alineación de Secuencia , Espectroscopía Infrarroja Corta
17.
New Phytol ; 217(1): 82-104, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28944535

RESUMEN

Few transcription factors have been identified in C4 grasses that either positively or negatively regulate monolignol biosynthesis. Previously, the overexpression of SbMyb60 in sorghum (Sorghum bicolor) has been shown to induce monolignol biosynthesis, which leads to elevated lignin deposition and altered cell wall composition. To determine how SbMyb60 overexpression impacts other metabolic pathways, RNA-Seq and metabolite profiling were performed on stalks and leaves. 35S::SbMyb60 was associated with the transcriptional activation of genes involved in aromatic amino acid, S-adenosyl methionine (SAM) and folate biosynthetic pathways. The high coexpression values between SbMyb60 and genes assigned to these pathways indicate that SbMyb60 may directly induce their expression. In addition, 35S::SbMyb60 altered the expression of genes involved in nitrogen (N) assimilation and carbon (C) metabolism, which may redirect C and N towards monolignol biosynthesis. Genes linked to UDP-sugar biosynthesis and cellulose synthesis were also induced, which is consistent with the observed increase in cellulose deposition in the internodes of 35S::SbMyb60 plants. However, SbMyb60 showed low coexpression values with these genes and is not likely to be a direct regulator of cell wall polysaccharide biosynthesis. These findings indicate that SbMyb60 can activate pathways beyond monolignol biosynthesis, including those that synthesize the substrates and cofactors required for lignin biosynthesis.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Metabolismo Secundario , Sorghum/genética , Factores de Transcripción/metabolismo , Vías Biosintéticas , Pared Celular/metabolismo , Celulosa/metabolismo , Expresión Génica , Redes Reguladoras de Genes , Metabolómica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ARN , Sorghum/metabolismo , Factores de Transcripción/genética , Activación Transcripcional
18.
Plant J ; 92(6): 1059-1075, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29030891

RESUMEN

Switchgrass (Panicum virgatum), a perennial, polyploid, C4 warm-season grass is among the foremost herbaceous species being advanced as a source of biomass for biofuel end uses. At the end of every growing season, the aerial tissues senesce, and the below-ground rhizomes become dormant. Future growth is dependent on the successful over-wintering of the rhizomes. Although the importance of rhizome health to overall year-upon-year plant productivity has been long recognized, there is limited information on seasonal changes occurring during dormancy at both the transcriptome and metabolite levels. Here, global changes in transcriptomes and metabolites were investigated over two growing seasons in rhizomes harvested from field-grown plants. The objectives were: (a) synthesize information on cellular processes that lead to dormancy; and (b) provide models that could account for major metabolic pathways present in dormant switchgrass rhizomes. Overall, metabolism during dormancy appeared to involve discrete but interrelated events. One was a response to abscisic acid that resulted in dehydration, increases in osmolytes and upregulation of autophagic processes, likely through the target of rapamycin complex and sucrose non-fermentative-related kinase-based signaling cascades. Another was a recalibration of energy transduction through apparent reductions in mitochondrial oxidative phosphorylation, increases in substrate level generation of ATP and reducing equivalents, and recycling of N and possibly CO2 through refixation. Lastly, transcript abundances indicated that cold-related signaling was also occurring. Altogether, these data provide a detailed overview of rhizome metabolism, especially during dormancy, which can be exploited in the future to improve winter survival in switchgrass.


Asunto(s)
Ácido Abscísico/metabolismo , Panicum/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Rizoma/genética , Transcriptoma , Biocombustibles , Biomasa , Mapeo Cromosómico , Panicum/crecimiento & desarrollo , Panicum/metabolismo , Poliploidía , Rizoma/crecimiento & desarrollo , Rizoma/metabolismo , Estaciones del Año , Análisis de Secuencia de ARN
19.
Sci Rep ; 7(1): 1596, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28473720

RESUMEN

Anthurium amnicola Dressler possesses a number of desirable and novel ornamental traits such as a purple-colored upright spathe, profuse flowering, and floral scent, some of which have been introgressed into modern Anthurium cultivars. As a first step in identifying genes associated with these traits, the transcriptome from root, leaf, spathe, and spadix from an accession of A. amnicola was assembled, resulting in 28,019 putative transcripts representing 19,458 unigenes. Genes involved in pigmentation, including those for the metabolism of chlorophyll and the biosynthesis of carotenoids, phenylpropanoids, and flavonoids were identified. The expression levels of one MYB transcription factor was highly correlated with naringenin 3-dioxygenase (F3H) and dihydroflavonol-4-reductase (DFR) in leaves, whereas a bHLH transcription factor was highly correlated with flavonoid 3'-monooxygenase (F3'H) and a DFR in spathes, suggesting that these two transcription factors might regulate flavonoid and anthocyanin synthesis in A. amnicola. Gene sequence and expression data from four major organs of A. amnicola provide novel basal information for understanding the genetic bases of ornamental traits and the determinants and evolution of form and function in the Araceae.


Asunto(s)
Araceae/genética , Araceae/metabolismo , Vías Biosintéticas/genética , Pigmentos Biológicos/biosíntesis , Transcriptoma , Carotenoides/metabolismo , Clorofila/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Especificidad de Órganos , Fenotipo , Propanoles/metabolismo , Reproducibilidad de los Resultados
20.
BMC Plant Biol ; 17(1): 46, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28209137

RESUMEN

BACKGROUND: Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level. RESULTS: The global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation. CONCLUSIONS: Extensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.


Asunto(s)
Áfidos/fisiología , Panicum/genética , Panicum/parasitología , Tetraploidía , Animales , Ácido Clorogénico/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Interacciones Huésped-Patógeno/genética , Panicum/metabolismo , Ácidos Pipecólicos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...