Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 11(9)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37760936

RESUMEN

Bile acids (BAs) and their signaling pathways have been identified as therapeutic targets for liver and metabolic diseases. We generated Cyp2c70-/- (KO) mice that were not able to convert chenodeoxycholic acid into rodent-specific muricholic acids (MCAs) and, hence, possessed a more hydrophobic, human-like BA pool. Recently, we have shown that KO mice display cholangiopathic features with the development of liver fibrosis. The aim of this study was to determine whether BA sequestration modulates liver pathology in Western type-diet (WTD)-fed KO mice. The BA sequestrant colesevelam was mixed into the WTD (2% w/w) of male Cyp2c70+/+ (WT) and KO mice and the effects were evaluated after 3 weeks of treatment. Colesevelam increased fecal BA excretion in WT and KO mice and reduced the hydrophobicity of biliary BAs in KO mice. Colesevelam ameliorated diet-induced hepatic steatosis in WT mice, whereas KO mice were resistant to diet-induced steatosis and BA sequestration had no additional effects on liver fat content. Total cholesterol concentrations in livers of colesevelam-treated WT and KO mice were significantly lower than those of untreated controls. Of particular note, colesevelam treatment normalized plasma levels of liver damage markers in KO mice and markedly decreased hepatic mRNA levels of fibrogenesis-related genes in KO mice. Lastly, colesevelam did not affect glucose excursions and insulin sensitivity in WT or KO mice. Our data show that BA sequestration ameliorates liver pathology in Cyp2c70-/- mice with a human-like bile acid composition without affecting insulin sensitivity.

2.
Pediatr Res ; 93(6): 1582-1590, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36151295

RESUMEN

BACKGROUND: Cyp2c70-/- mice with a human-like bile acid (BA) composition display features of neonatal cholestasis. We assessed whether perinatal ursodeoxycholic acid (UDCA) exposure prevents neonatal cholestasis in Cyp2c70-/- mice and reduces cholangiopathy development later in life. METHODS: Cyp2c70+/- males were crossed with Cyp2c70+/- females fed either a regular chow diet or a 0.1% UDCA-containing diet during breeding, gestation, and suckling. Cholestasis and liver function parameters were assessed in their Cyp2c70-/- and wild-type offspring at 3 and 8 weeks of age. RESULTS: Three-week-old Cyp2c70-/- pups showed features of neonatal cholestasis, including elevated plasma BAs and transaminases, which were completely prevented in Cyp2c70-/- pups upon perinatal UDCA exposure. In addition, UDCA administration to the dams corrected altered hepatic gene expression patterns in Cyp2c70-/- pups, reduced markers of fibrogenesis and inflammation, and prevented cholangiocyte proliferation. Yet, these beneficial effects of perinatal UDCA exposure were not retained into adulthood upon discontinuation of treatment. CONCLUSION: Perinatal exposure of Cyp2c70-/- mice to UDCA has beneficial effects on liver function parameters, supporting a direct role of BA hydrophobicity in the development of neonatal cholestasis in these mice. However, prevention of neonatal cholestasis in Cyp2c70-/- mice has no long-lasting effects on liver pathophysiology. IMPACT: This is the first study showing that perinatal UDCA exposure prevents features of neonatal cholestasis that are observed in mice with a human-like bile acid composition, i.e., Cyp2c70-/- mice. Perinatal UDCA exposure of Cyp2c70-/- pups leads to UDCA enrichment in their circulating bile acid pool and, consequently, to a reduced hydrophobicity of biliary bile acids. Perinatal UDCA exposure of Cyp2c70-/- pups has no long-lasting effects on the development of cholangiopathy after discontinuation of treatment. The results in this study expand current knowledge regarding acute and long-lasting effects of UDCA treatment in early life.


Asunto(s)
Colestasis , Hepatopatías , Masculino , Embarazo , Femenino , Humanos , Ratones , Animales , Recién Nacido , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/metabolismo , Ácidos y Sales Biliares , Colestasis/genética
3.
J Lipid Res ; 62: 100134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34626589

RESUMEN

Bile acids (BAs) play important roles in lipid homeostasis, and BA signaling pathways serve as therapeutic targets for nonalcoholic fatty liver disease (NAFLD). Recently, we generated cytochrome P450, family 2, subfamily C, polypeptide 70 (Cyp2c70-/-) mice with a human-like BA composition lacking mouse-/rat-specific muricholic acids to accelerate translation from mice to humans. We employed this model to assess the consequences of a human-like BA pool on diet-induced obesity and NAFLD development. Male and female Cyp2c70-/- mice and WT littermates were challenged with a 12-week high-fat Western-type diet (WTD) supplemented with 0.25% cholesterol. Cyp2c70 deficiency induced a hydrophobic BA pool with high abundances of chenodeoxycholic acid, particularly in females, because of sex-dependent suppression of sterol 12α-hydroxylase (Cyp8b1). Plasma transaminases were elevated, and hepatic fibrosis was present in Cyp2c70-/- mice, especially in females. Surprisingly, female Cyp2c70-/- mice were resistant to WTD-induced obesity and hepatic steatosis, whereas male Cyp2c70-/- mice showed similar adiposity and moderately reduced steatosis compared with WT controls. Both intestinal cholesterol and FA absorption were reduced in Cyp2c70-/- mice, the latter more strongly in females, despite unaffected biliary BA secretion rates. Intriguingly, the biliary ratio 12α-/non-12α-hydroxylated BAs significantly correlated with FA absorption and hepatic triglyceride content as well as with specific changes in gut microbiome composition. The hydrophobic human-like BA pool in Cyp2c70-/- mice prevents WTD-induced obesity in female mice and NAFLD development in both genders, primarily because of impaired intestinal fat absorption. Our data point to a key role for 12α-hydroxylated BAs in control of intestinal fat absorption and modulation of gut microbiome composition.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado Graso/prevención & control , Animales , Sistema Enzimático del Citocromo P-450/deficiencia , Dieta Occidental/efectos adversos , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control
4.
Cell Mol Gastroenterol Hepatol ; 11(4): 1045-1069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33309945

RESUMEN

BACKGROUND AND AIMS: Bile acids (BAs) aid intestinal fat absorption and exert systemic actions by receptor-mediated signaling. BA receptors have been identified as drug targets for liver diseases. Yet, differences in BA metabolism between humans and mice hamper translation of pre-clinical outcomes. Cyp2c70-ablation in mice prevents synthesis of mouse/rat-specific muricholic acids (MCAs), but potential (patho)physiological consequences of their absence are unknown. We therefore assessed age- and gender-dependent effects of Cyp2c70-deficiency in mice. METHODS: The consequences of Cyp2c70-deficiency were assessed in male and female mice at different ages. RESULTS: Cyp2c70-/- mice were devoid of MCAs and showed high abundances of chenodeoxycholic and lithocholic acids. Cyp2c70-deficiency profoundly impacted microbiome composition. Bile flow and biliary BA secretion were normal in Cyp2c70-/- mice of both sexes. Yet, the pathophysiological consequences of Cyp2c70-deficiency differed considerably between sexes. Three-week old male Cyp2c70-/- mice showed high plasma BAs and transaminases, which spontaneously decreased thereafter to near-normal levels. Only mild ductular reactions were observed in male Cyp2c70-/- mice up to 8 months of age. In female Cyp2c70-/- mice, plasma BAs and transaminases remained substantially elevated with age, gut barrier function was impaired and bridging fibrosis was observed at advanced age. Addition of 0.1% ursodeoxycholic acid to the diet fully normalized hepatic and intestinal functions in female Cyp2c70-/- mice. CONCLUSION: Cyp2c70-/- mice show transient neonatal cholestasis and develop cholangiopathic features that progress to bridging fibrosis in females only. These consequences of Cyp2c70-deficiency are restored by treatment with UDCA, indicating a role of BA hydrophobicity in disease development.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Enfermedades de las Vías Biliares/prevención & control , Colangitis/prevención & control , Ácidos Cólicos/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Fibrosis/prevención & control , Ácido Ursodesoxicólico/farmacología , Animales , Enfermedades de las Vías Biliares/etiología , Enfermedades de las Vías Biliares/metabolismo , Enfermedades de las Vías Biliares/patología , Colangitis/etiología , Colangitis/metabolismo , Colangitis/patología , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Curr Opin Clin Nutr Metab Care ; 24(2): 127-133, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075001

RESUMEN

PURPOSE OF REVIEW: Bile acids and their signalling pathways are increasingly recognized as potential therapeutic targets for several diseases. This review summarizes new insights in bile acid physiology, focussing on regulatory roles of bile acids in intestinal functions. RECENT FINDINGS: Recent studies have highlighted the interactions between bile acids and gut microbiome: interfering with microbiome composition may be beneficial in treatment of liver and metabolic diseases by modulating bile acid composition, as different bile acid species have different signalling functions. In the intestine, bile acid receptors FXR, VDR and TGR5 are involved in control of barrier function, paracellular ion transport and hormone release. Specific microbial bile acid metabolites modulate immune responses of the host. In addition, new functions of bile acids in regulation of gastric emptying and satiation via brain-gut-liver axis have been discovered. Identification of Cyp2c70 as the enzyme responsible for generation of hydrophilic mouse/rat-specific muricholic acids has allowed the generation of murine models with a human-like bile acid composition. SUMMARY: Specific bile acids act as important signalling molecules affecting whole body metabolism, specific transport processes and immunity in different segments of the intestinal tract. Their relevance for human (patho)physiology is emerging. Novel mouse models with human-like bile acid composition will aid to accelerate translational research.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Animales , Modelos Animales de Enfermedad , Humanos , Hígado , Ratones , Ratas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...