Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Biomed Mater ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39208851

RESUMEN

Vascular tissue engineering endeavors to design, fabricate, and validate biodegradable and bioabsorbable small-diameter vascular scaffolds engineered with bioactive molecules, capable of meeting the challenges imposed by commercial vascular prostheses. A comprehensive investigation of these engineered scaffolds in bioreactor is deemed essential as a prerequisite before any in vivo experimentation in order to get information regarding their behavior under physiological conditions and predict the biological activities they will possess. This study focuses on an innovative electrospun scaffold made of poly(caprolactone) and poly(glycerol sebacate), integrating quercetin, able to modulate inflammation, and gelatin, necessary to reduce permeability. A custom-made bioreactor was used to assess the performances of the scaffolds maintained under different pressure regimes, covering the human physiological pressure range. As results, the 3D microfibrous architecture was notably influenced by the release of bioactives, maintaining the adequate properties needed for the in vivo regeneration and scaffolds showed mechanical properties similar to human native artery. Release of gelatin was adequate to avoid blood leakage and useful to make the material porous during the testing period, whereas the amount of released quercetin was useful to counteract the post-surgery inflammation. This study showcases the successful validation of an engineered scaffold in a bioreactor, enabling to consider it as a promising candidate for vascular substitutes in in vivo applications. Our approach represents a significant leap forward in the field of vascular tissue engineering, offering a multifaceted solution to the complex challenges associated with small-diameter vascular prostheses. .

2.
J Cell Mol Med ; 28(7): e18192, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38506079

RESUMEN

In the last decade, extensive attention has been paid to the uremic toxin indoxyl sulphate (IS) as an inducer of cardiac fibroblast (cFib) activation and cardiac fibrosis in chronic kidney disease. At cellular level, IS engages aryl hydrocarbon receptor (AhR) and regulates many biological functions. We analysed how AhR inhibition by CH-223191 (CH) and overexpression of non-functional (dominant negative, DN) nuclear factor-erythroid-2-related factor 2 (NRF2), a transcription factor recruited by AhR, modulate the response of neonatal mouse (nm) cFib to IS. We also evaluated nm-cardiomyocytes after incubation with the conditioned medium (CM) of IS±CH-treated nm-cFib. IS induced activation, collagen synthesis, TLR4 and-downstream-MCP-1, and the genes encoding angiotensinogen, angiotensin-converting enzyme, angiotensin type 1 receptor (AT1r) and neprilysin (Nepr) in nm-cFib. CH antagonized IS-initiated nm-cFib activation, but did not affect or even magnified the other features. IS promoted NRF2 nuclear translocation and expression the NRF2 target Nqo1. Both pre-incubation with CH and transfection of DN-NRF2 resulted in loss of NRF2 nuclear localization. Moreover, DN-NRF2 overexpression led to greater TLR4 and MCP-1 levels following exposure to IS. The CM of IS-primed nm-cFib and to a larger extent the CM of IS+CH-treated nm-cFib upregulated AT1r, Nepr and TNFα and myostatin genes in nm-cardiomyocytes. Hence, IS triggers pro-inflammatory activation of nm-cFib partly via AhR, and AhR-NRF2 counteract it. Strategies other than AhR inhibition are needed to target IS detrimental actions on cardiac cells.


Asunto(s)
Indicán , Transducción de Señal , Ratones , Animales , Indicán/farmacología , Indicán/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor Toll-Like 4/genética , Fibroblastos/metabolismo
3.
J Biomed Mater Res A ; 111(10): 1500-1512, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37128974

RESUMEN

The fabrication of biodegradable, bioabsorbable, and biocompatible vascular scaffolds with enhanced mechanical and biological properties that are able to modulate local inflammation and induce endothelialization after surgical implant is still a challenge. In this work, a fibrous scaffold, made of poly(ε-caprolactone) and poly(glycerol sebacate), was fabricated to be potentially used as a small-diameter graft in vascular surgery. The novelty of this research is represented by the direct incorporation of quercetin, a well-known antioxidant compound with several biological properties, into a polymeric scaffold obtaining a vascular construct able to modulate two key factors involved in postsurgical inflammation, matrix metalloproteinase-9 and endothelial nitric oxide synthase. For its production, an electrospinning apparatus, a solution made of the two polymers (both 20% (w/v), mixed at the ratio 1:1 (v/v)), and free quercetin (0.05% (w/v)) were used. Scanning electron and atomic force microscopies were employed to investigate the morphological properties of the fabricated electrospun scaffolds. Furthermore, physicochemical properties, including Fourier-transform infrared spectroscopy, mass loss, fluid uptake, quercetin release, mechanical properties, and biological activity of the scaffolds were studied. The expression of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and of endothelial nitric oxide synthase was evaluated when the quercetin-functionalized scaffold was exposed to  human endothelial cells treated with tumor necrosis factor-α. The results of this study confirmed the feasibility of incorporating free quercetin during the electrospinning process to impart biological properties to small-diameter vascular prostheses.


Asunto(s)
Prótesis Vascular , Humanos , Línea Celular , Supervivencia Celular , Materiales Biocompatibles/química , Quercetina/química
4.
Eur J Clin Invest ; 53(9): e14011, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37099603

RESUMEN

BACKGROUND: This study aimed to estimate if the altered sphygmic wave transmission may affect the left ventricular (LV) contractile function in patients undergoing endovascular aortic repair (EVAR). METHODS: A prospective single-centre study was carried out on consecutive patients undergoing EVAR for abdominal aortic aneurysm. A preoperative and 6-month single photon emission computed tomography (SPECT) with arterial stiffness measurement were performed to evaluate variations in pressure wave curve and myocardial perfusion parameters. RESULTS: From 2018 to 2020 a total of 16 patients were included in the study. Among the parameters evaluated, we found a measurable reduction of the reflected wave transit time from pre- to postoperative period, for both stress (115.13 ± 7.2 ms-111.1 ± 7.0 ms, p = .08) and rest SPECT acquisitions (115.3 ± 6.2 ms-112.2 ± 5.6 ms, p = .1). Unidirectional increase of both LV end-systolic volume (34 ± 9 mL-39 ± 8 mL, p = .02) and end-diastolic volume (85 ± 34 mL-89 ± 29 mL, p = .6) was also observed. Lastly, the ratio between the end-systolic pressure and the end-systolic volume (maximal systolic myocardial stiffness) decreased from 3.6 ± 1.5 mmHg/mL to 2.66 ± .74 mmHg/mL (p = .03). CONCLUSIONS: Our data showed that EVAR induced an altered transmission of the sphygmic wave associated with an early LV contractile impairment.


Asunto(s)
Aneurisma de la Aorta Abdominal , Disfunción Ventricular Izquierda , Humanos , Estudios Prospectivos , Reparación Endovascular de Aneurismas , Función Ventricular Izquierda , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/cirugía
5.
Int J Biol Macromol ; 221: 1618-1630, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35970371

RESUMEN

Atherosclerosis represents one of the main causes of death in the Western world. It is a multifactorial pathology characterized by lesions that reduce the lumen of the vessels causing serious clinical events. The extra-domain B of fibronectin is overexpressed during angiogenesis and in tissues undergoing growth and extensive remodeling, i.e., atherosclerotic plaque. Bevacizumab is a recombinant humanized monoclonal antibody that can play a central role against angiogenesis reducing the risk associated with this process in atherosclerosis. In this work, an innovative nanosystem for the targeted delivery of bevacizumab to the atherosclerotic lesion is proposed. A production protocol for poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles loaded with bevacizumab and functionalized with immunouteroglobin-1 was designed. Once functionalized nanoparticles with immunouteroglobin-1 were produced, they were characterized in terms of morphology, mean diameter, ζ-potential, association and conjugation efficiencies, bevacizumab release profile, both in phosphate buffered saline and in serum, bevacizumab stability after release, cytocompatibility, and hemocompatibility. Nanoparticle mean diameter was in the range of 217-265 nm, their surface charge was between -22 and -8 mV, and the association and conjugation efficiencies of about 76 and 59 %, respectively. Fourier transform infrared spectroscopy analysis confirmed the functionalization of their surface with immunouteroglobin-1. In vitro assays showed that the studied nanoparticles were cytocompatible, once in contact with human endothelial and murine macrophage cell lines up to 72 h, and hemocompatible, once in contact with red blood cells, at different concentrations of encapsulated bevacizumab (0.1, 1, 10, and 100 µg/mL).


Asunto(s)
Aterosclerosis , Nanopartículas , Humanos , Ratones , Animales , Bevacizumab/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Nanopartículas/química , Polietilenglicoles , Neovascularización Patológica , Tamaño de la Partícula
6.
J Clin Med ; 11(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35806921

RESUMEN

Ischemia/reperfusion (I/R) injury complicates both unpredictable events (myocardial infarction and stroke) as well as surgically-induced ones when transient clampage of major vessels is needed. Although the main cause of damage is attributed to mitochondrial dysfunction and oxidative stress, the use of antioxidant compounds for protection gave poor results when challenged in clinics. More recently, there is an assumption that, in humans, profound metabolic changes may prevail in driving I/R injury. In the present work, we narrowed the field of search to I/R injury in the heart/brain/kidney axis in acute myocardial infarction, major vascular surgery, and to the current practice of protection in both settings; then, to help the definition of novel strategies to be translated clinically, the most promising metabolic targets with their modulatory compounds-when available-and new preclinical strategies against I/R injury are described. The consideration arisen from the broad range of studies we have reviewed will help to define novel therapeutic approaches to ensure mitochondrial protection, when I/R events are predictable, and to cope with I/R injury, when it occurs unexpectedly.

7.
Polymers (Basel) ; 14(13)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35808639

RESUMEN

This work is a comparative study among three different biocompatible and biodegradable polymers, poly(lactic-co-glycolic acid), poly(ε-caprolactone), and poly(lactic acid), used to produce microparticles for the encapsulation of bevacizumab for drug delivery purposes. All the formulations were produced using the double emulsion water-oil-water evaporation method and characterized in terms of particle mean diameter, particle size distribution, and bevacizumab entrapment efficiency. Bevacizumab cumulative release was taken into consideration to study the dissolution kinetics from the three different polymeric delivery platforms for a period of 50 days at 37 °C in phosphate buffered saline and mathematical models of the drug release kinetic were attempted in order to describe the release phenomena from the different types of the studied microparticles. Finally, cell viability on human endothelial cell line EA.hy926 was studied to define the maximum cytocompatible concentration for each microsystem, registering the mitochondrial functionality through MTS assay.

8.
Life Sci ; 297: 120468, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35288175

RESUMEN

INTRODUCTION: Ischemia-Reperfusion (I/R) damage is one of the major challenges in cardiothoracic surgeries and in a pathological manner, is identified by exacerbated damage signals resulted from blood supply restriction and subsequent flow restoration and re­oxygenation. I/R damage includes cellular dysfunction and death, impairing tissue and organ function. Inflammation and oxidative stress are known to underlie either ischemia or reperfusion, leaded by HIF, TNF-α, NF-κB, IL-6 and ROS formation. However, the available approaches to prevent I/R damage has been unsuccessful so far. As agonists of peroxisome-proliferation activation receptor (PPAR) are described as transcription factors related to anti-inflammatory factors, we proposed to observe the effects of novel dual agonist, GQ-11, in I/R-related damage. METHODS: Male, Wistar rats, 60 days age and 305 g body weight average were treated with vehicle, pioglitazone or GQ-11 (20 mg/kg) for 7 consecutive days and were submitted to aorta clamping for 30 min followed by 3 h of reperfusion. 18F-fluorodeoxyglucose (18F-FDG), an analog of glucose associated with inflammation when accumulated, was observed in liver and bowel by positron emission tomography (PET). RESULTS: GQ-11 decreased 18F-FDG uptake in liver and bowel when compared to vehicle and pioglitazone. The treatment also modulated inflammatory markers IL-10, TGF-ß, IL-6, IL1-ß, TNFα, and CCL-2, besides antioxidant enzymes such as catalase, GPx and SOD. CONCLUSION: Inflammation and oxidative stress showed to be important processes to be regulated in I/R in order to prevent exacerbated responses that leads to cell/tissue dysfunction and death. PPAR agonists - including GQ-11 - might be promising agents in a strategy to avoid tissue dysfunction and death after cardiothoracic surgeries.


Asunto(s)
PPAR alfa , Daño por Reperfusión , Animales , Aorta/patología , Constricción , Masculino , PPAR gamma/agonistas , Ratas , Ratas Wistar , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2266-2269, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34891738

RESUMEN

Carotid artery disease is an inflammatory condition involving the deposition and accumulation of lipid species and leucocytes from blood into the arterial wall, which causes the narrowing of the carotid arteries on either side of the neck. Different imaging modalities can by implemented to determine the presence and the location of carotid artery stenosis, such as carotid ultrasound, computed tomography angiography (CTA), magnetic resonance angiography (MRA), or cerebral angiography. However, except of the presence and the degree of stenosis of the carotid arteries, the vulnerability of the carotid atherosclerotic plaques constitutes a significant factor for the progression of the disease and the presence of disease symptoms. In this study, our aim is to develop and present a machine learning model for the identification of high risk plaques using non imaging based features and non-invasive imaging based features. Firstly, we implemented statistical analysis to identify the most statistical significant features according to the defined output, and subsequently, we implemented different feature selection techniques and classification schemes for the development of our machine learning model. The overall methodology has been trained and tested using 208 cases of 107 cases of low risk plaques and 101 cases of high risk plaques. The highest accuracy of 0.76 was achieved using the relief feature selection technique and the support vector machine classification scheme. The innovative aspect of the proposed machine learning model is both the different categories of the utilized input features and the definition of the problem to be solved.


Asunto(s)
Estenosis Carotídea , Placa Aterosclerótica , Arterias Carótidas/diagnóstico por imagen , Estenosis Carotídea/diagnóstico por imagen , Angiografía Cerebral , Humanos , Aprendizaje Automático , Placa Aterosclerótica/diagnóstico por imagen
10.
J Mater Chem B ; 9(41): 8558-8568, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34609399

RESUMEN

Cardiovascular diseases are the leading cause of mortality in the Western world. Among them, atherosclerosis represents one of the most common diseases in the modern society due to a common sedentary lifestyle, high-fat diet, and smoking. In the near future, a new approach could potentially improve the therapy of vascular pathologies, where to date the non-specific treatments present several limitations, such as poor biodistribution, quick elimination from the body, and undesired side-effects. In this field, nanotechnology has a great potential for the therapy and diagnosis of atherosclerosis with more and more recent and innovative publications. This review is a critical analysis of the results reported in the literature regarding the different and possible new approaches for the therapy and diagnosis of atherosclerosis.


Asunto(s)
Antiinflamatorios/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Nanotecnología , Antiinflamatorios/química , Aterosclerosis/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA