Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 4: e732, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23868065

RESUMEN

Cancer cells, which use more glucose than normal cells and accumulate extracellular lactate even under normoxic conditions (Warburg effect), have been reported to undergo cell death under glucose deprivation, whereas normal cells remain viable. As it may be relevant to exploit the molecular mechanisms underlying this biological response to achieve new cancer therapies, in this paper we sought to identify them by using transcriptome and proteome analysis applied to an established glucose-addicted cellular model of transformation, namely, murine NIH-3T3 fibroblasts harboring an oncogenic K-RAS gene, compared with parental cells. Noteworthy is that the analyses performed in high- and low-glucose cultures indicate that reduction of glucose availability induces, especially in transformed cells, a significant increase in the expression of several unfolded protein response (UPR) hallmark genes. We show that this response is strictly associated with transformed cell death, given that its attenuation, by reducing protein translation or by increasing cell protein folding capacity, preserves the survival of transformed cells. Such an effect is also observed by inhibiting c-Jun NH2-terminal kinase, a pro-apoptotic signaling mediator set downstream of UPR. Strikingly, addition of N-acetyl-D-glucosamine, a specific substrate for the hexosamine biosynthesis pathway (HBP), to glucose-depleted cells completely prevents transformed cell death, stressing the important role of glucose in HBP fuelling to ensure UPR attenuation and increased cell survival. Interestingly, these results have been fully recognized in a human model of breast cancer, MDA-MB-231 cells. In conclusion, we show that glucose deprivation, leading to harmful accumulation of unfolded proteins in consequence of a reduction of protein glycosylation, induces a UPR-dependent cell death mechanism. These findings may open the way for new therapeutic strategies to specifically kill glycolytic cancer cells.


Asunto(s)
Apoptosis , Glucosa/deficiencia , Hexosaminas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Respuesta de Proteína Desplegada , Proteínas ras/genética , Acetilglucosamina/fisiología , Animales , Vías Biosintéticas , Línea Celular Transformada , Línea Celular Tumoral , Supervivencia Celular , Estrés del Retículo Endoplásmico , Redes Reguladoras de Genes , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Células 3T3 NIH , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , Proteínas ras/metabolismo
2.
Oncogene ; 32(3): 352-62, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22410778

RESUMEN

The Warburg effect in cancer cells has been proposed to involve several mechanisms, including adaptation to hypoxia, oncogenes activation or loss of oncosuppressors and impaired mitochondrial function. In previous papers, it has been shown that K-ras transformed mouse cells are much more sensitive as compared with normal cells to glucose withdrawal (undergoing apoptosis) and present a high glycolytic rate and a strong reduction of mitochondrial complex I. Recent observations suggest that transformed cells have a derangement in the cyclic adenosine monophosphate/cAMP-dependent protein kinase (cAMP/PKA) pathway, which is known to regulate several mitochondrial functions. Herein, the derangement of the cAMP/PKA pathway and its impact on transformation-linked changes of mitochondrial functions is investigated. Exogenous stimulation of PKA activity, achieved by forskolin treatment, protected K-ras-transformed cells from apoptosis induced by glucose deprivation, enhanced complex I activity, intracellular adenosine triphosphate (ATP) levels, mitochondrial fusion and decreased intracellular reactive oxygen species (ROS) levels. Several of these effects were almost completely prevented by inhibiting the PKA activity. Short-time treatment with compounds favoring mitochondrial fusion strongly decreased the cellular ROS levels especially in transformed cells. These findings support the notion that glucose shortage-induced apoptosis, specific of K-ras-transformed cells, is associated to a derangement of PKA signaling that leads to mitochondrial complex I decrease, reduction of ATP formation, prevalence of mitochondrial fission over fusion, and thereby opening new approaches for development of anticancer drugs.


Asunto(s)
Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes ras/genética , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Fibroblastos/citología , Glucosa/farmacología , Humanos , Ratones , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo
3.
Biotechnol Adv ; 30(1): 30-51, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21802503

RESUMEN

Great interest is presently given to the analysis of metabolic changes that take place specifically in cancer cells. In this review we summarize the alterations in glycolysis, glutamine utilization, fatty acid synthesis and mitochondrial function that have been reported to occur in cancer cells and in human tumors. We then propose considering cancer as a system-level disease and argue how two hallmarks of cancer, enhanced cell proliferation and evasion from apoptosis, may be evaluated as system-level properties, and how this perspective is going to modify drug discovery. Given the relevance of the analysis of metabolism both for studies on the molecular basis of cancer cell phenotype and for clinical applications, the more relevant technologies for this purpose, from metabolome and metabolic flux analysis in cells by Nuclear Magnetic Resonance and Mass Spectrometry technologies to positron emission tomography on patients, are analyzed. The perspectives offered by specific changes in metabolism for a new drug discovery strategy for cancer are discussed and a survey of the industrial activity already going on in the field is reported.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Humanos , Redes y Vías Metabólicas , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA