Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 203: 108074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37832367

RESUMEN

The Pepper huasteco yellow vein virus (PHYVV) is an endemic geminivirus in Mexico causing partial or total losses in the pepper crop since the damage caused by the virus has not been fully controlled. In this work, we evaluated the effect of ZnO NPs (0, 50, 100, 150, and 200 mM) as a preventive (72 h before) and curative (72 h after) treatment of PHYVV infection in two jalapeño pepper varieties. In this study, we observed a decrease in symptoms, and it could be caused by an induction of the defense system in pepper plants and a direct action on PHYVV by foliar application of ZnO NPs. Our findings suggest that ZnO NP application significantly decreased the viral titer for both varieties at 200 mM by 15.11-fold. However, this effect was different depending on the timing of application and the variety of pepper. The greatest decrease in the viral titer in the preventive treatment in both varieties was at the concentration of 200 mM (1781.17 and 274.5 times, respectively). For curative treatment in cv. Don Pancho at the concentration of 200 mM (333.33 times) and cv. Don Benito at 100 mM (43.10 folds). compared to control. Furthermore, virus mobility was generally restricted for both varieties at 100 mM (15.13-fold) compared to the control. The results possibly delineated that ZnO NPs increased plant resistance possibly by increasing POD (2.08 and 0.25 times) and SOD (0.998 and 1.38) in cv. Don Pancho and cv. Don Benito, respectively. On the other hand, in cv. Don Pancho and cv. Don Benito presented a decrease in CAT (0.61 and 0.058) and PAL (0.78 and 0.77), respectively. Taken together, we provide the first evidence to demonstrate the effect of ZnO NPs on viral symptoms depending on the plan-virus-ZnO NP interaction.


Asunto(s)
Begomovirus , Capsicum , Geminiviridae , Óxido de Zinc , Óxido de Zinc/farmacología , Geminiviridae/fisiología , Plantas
2.
Appl Radiat Isot ; 188: 110355, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35841850

RESUMEN

In this work, were determined some radiation shielding and dosimetric parameters of three types of bricks for photons energy from 1 keV to 100 GeV photons using the Phy-X/PSD software, and for comparison also has been calculated the same parameters for NBS concrete. The parameters calculated are the linear attenuation coefficients (LAC), effective atomic numbers (Zeff), half value layers (HVL), the energy absorption buildup factors (EABF) and the exposure buildup factors (EBF), as well as the coefficients to use the geometric progression (G-P) fitting method. Obtained results show that the three types of bricks can be used safely for the design of medical facilities housing mammography units (less than 30 keV).


Asunto(s)
Protección Radiológica , Radiometría , Fotones , Programas Informáticos
3.
Heliyon ; 8(3): e09049, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35287323

RESUMEN

Current agricultural practices for vegetable production are unsustainable, and the use of certain nanomaterials has shown significant potential for either plant growth promotion or defense induction in crop species. The aim of the present work was to evaluate the possible effects of two SBA nano-structured silica materials differing in morphology; SBA-15, with porous structure in parallel and with a highly ordered hexagonal array and SBA-16, with spheric nano-cages located in cubic arrays, as plant growth promoters/eustressors on chili pepper (Capsicum annuum L.) during cultivation under greenhouse conditions. The study was carried out at three foliarly applied concentrations (20, 50 and 100 ppm) of either SBA materials to determine effects on seed germination, seedling growth, plant performance and cold tolerance under greenhouse. Phytotoxicity tests were carried out using higher concentrations (100, 1000 and 200 ppm) applied by dipping or spraying onto chili pepper plants. Deionized water controls were included. The results showed that the SBA materials did not affect seed germination; however, SBA-15 at 50 ppm and 100 ppm applied by imbibition significantly increased seedling height (up to 8-fold) and provided enhanced growth performance in comparison with controls under select treatment regimes. Weekly application of SBA-15 at 20 ppm significantly increased stem diameter and cold tolerance; however, SBA-16 showed significant decreases in plant height (20 ppm biweekly applied) and stem diameter (20, 50 and 100 ppm biweekly applied). The results demonstrate that both SBA materials provided hormetic effects in a dose dependent manner on chili pepper production and protection to cold stress. No phytotoxic response was evident. These findings suggested the nanostructured mesoporous silica have potential as a sustainable amendment strategy to increase crop production under stress-inducing cultivation conditions.

4.
Materials (Basel) ; 13(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325750

RESUMEN

Water pollution by heavy metals represents several health risks. Conventional technologies employed to eliminate lead ions from residual or drinking water are expensive, therefore an efficient and low-cost technique is required and adsorption processes are a good alternative. In this work, the goal was to determine the adsorption capacity of a Disordered Mesoporous Silica 1 material (DMS-1) functionalized with amino groups, for Pb(II) ions removal. DMS-1 was prepared by sol-gel method and the incorporation of amino groups was performed by ex-situ method. As the source of amine groups, (3-Aminopropyl) triethoxysilane (APTES) was used and three different xNH2/DMS-1 molar ratios (0.2, 0.3, 0.4) were evaluated. In order to evaluate the incorporation of the amino group into the mesopore channels, thermal and structural analysis were made through Thermogravimetric Analysis (TGA), nitrogen adsorption-desorption at 77 K by Specific Brunauer-Emmett-Teller (SBET) method, Fourier Transfer Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). The higher Pb(II) ions removal was achieved with the 0.3 molar proportion of xNH2/DMS-1 reaching 99.44% efficiency. This result suggests that the functionalized material can be used as an efficient adsorbent for Pb(II) ions from aqueous solution.

5.
Materials (Basel) ; 13(4)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32093053

RESUMEN

Tridimensional cubic mesoporous silica, SBA-16, functionalized with aminopropyl groups, were employed as adsorbents for Pb2+ ion removal from aqueous solution. The adsorption capacity was investigated for the effect of pH, contact time, temperature, and concentration of 3-aminopropyltriethoxysilane (APTES) employed for adsorbent functionalization. The textural properties and morphology of the adsorbents were evaluated by N2 physisorption, small-angle X-ray diffraction (XRD), diffuse reflectance spectroscopy (UV-vis), and transmission electron microscopy (TEM). The functionalization of the SBA-16 was evaluated by elemental analysis (N), thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). Batch adsorption studies show that the total Pb2+ ions removal was archived on adsorbent having an optimized amount of aminopropyl groups (2N-SBA-16). The maximum of Pb2+ ions removal occurred at optimized adsorption conditions: pH = 5-6, contact time 40 min, and at a low initial lead concentration in solution (200 mg L-1). Under the same adsorption conditions, the amino-functionalized SBA-16 with cubic 3D unit cell structure exhibited higher adsorption capability than its SBA-15 counterpart with uniform mesoporous channels.

6.
Chemosphere ; 213: 481-497, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30245225

RESUMEN

In this paper, we report the combination of two metal oxides (TiO2ZnO) that allows mixed density of states to reduce band gap energy, facilitating the photo-oxidation of Congo red dye under visible light. For the oxidation, a possible mechanism is proposed after analyzing the intermediates by GC-MS, and it is consistent with Density Functional Theory (DFT). The nanohybrids were characterized comprehensibly by several analytical techniques such as X-Ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and X-ray Photoelectron Spectroscopy (XPS). For the addition of ZnO to TiO2, a dominance of anatase phase was found rather than other phases (rutile or brookite). A broad band (∼550 nm) is observed in UV-Visible spectra for TiO2ZnO/Ag NPs nm because of Surface Plasmon properties of Ag NPs. The band gap energy was calculated for TiO2ZnO/Ag system, and then it has been further studied by DFT in order to show why the convergence of two semiconductors allows a mixed density of states, facilitating the reduction of the energy gap between occupied and unoccupied bands; ultimately, it improves the performance of catalysts under visible light. Significantly, the interaction of crystal planes (0 0 I) of TiO2 anatase and (0 0 1) of ZnO crucially plays as an important role for the reduction of energy band-gap. Additionally, TiO2ZnOAg NPs were used recognize Saccharomyces cerevisiae cells by con-focal fluorescence microscope, showing that it develops bright bio-images for the cells; while for TiO2 or ZnO or TiO2ZnO NPs, no fluorescent response was seen within the cells.


Asunto(s)
Rojo Congo/química , Luz , Fotólisis , Titanio/química , Catálisis , Rojo Congo/efectos de la radiación , Microscopía , Nanopartículas/química , Semiconductores , Análisis Espectral , Óxido de Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...