Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 3(2): e1601302, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28168218

RESUMEN

Computer simulation of observable phenomena is an indispensable tool for engineering new technology, understanding the natural world, and studying human society. However, the most interesting systems are often so complex that simulating their future behavior demands storing immense amounts of information regarding how they have behaved in the past. For increasingly complex systems, simulation becomes increasingly difficult and is ultimately constrained by resources such as computer memory. Recent theoretical work shows that quantum theory can reduce this memory requirement beyond ultimate classical limits, as measured by a process' statistical complexity, C. We experimentally demonstrate this quantum advantage in simulating stochastic processes. Our quantum implementation observes a memory requirement of Cq = 0.05 ± 0.01, far below the ultimate classical limit of C = 1. Scaling up this technique would substantially reduce the memory required in simulations of more complex systems.

2.
Phys Rev Lett ; 110(22): 220402, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23767702

RESUMEN

Complementarity restricts the accuracy with which incompatible quantum observables can be jointly measured. Despite popular conception, the Heisenberg uncertainty relation does not quantify this principle. We report the experimental verification of universally valid complementarity relations, including an improved relation derived here. We exploit Einstein-Poldolsky-Rosen correlations between two photonic qubits to jointly measure incompatible observables of one. The product of our measurement inaccuracies is low enough to violate the widely used, but not universally valid, Arthurs-Kelly relation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA